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ABSTRACT 
 

TRIBOCHEMICAL STUDIES OF HARD CARBON FILMS AS A FUNCTION OF 
 

LOAD AND ENVIRONMENT 
 

Andrew Robert Konicek 

Robert William Carpick 

Hydrogen-free, hard carbon thin films are exciting material coatings candidates as 

solid lubricants. Two examples, ultrananocrystalline diamond (UNCD) and tetrahedral 

amorphous carbon (ta-C), are particularly promising, because their exceptional 

mechanical and tribological properties are combined with extremely smooth surfaces. 

However, their tribological performance can be seriously affected by variations in 

humidity. These materials do not perform well in vacuum or inert environments. The 

mechanisms controlling the friction and wear of UNCD and ta-C are not well understood 

because of a fundamental lack of physical understanding of the surface interactions.  

The aim of this thesis is to elucidate the fundamental mechanisms of friction and 

wear in UNCD and ta-C films. An experimental protocol is defined to examine the 

relationship between the sliding environment, tribological performance, and mechanical 

and chemical changes to the films. Self-mated reciprocating tribometry in controlled 

environments measure UNCD and ta-C friction as a function of load and relative 

humidity (RH). Scanning white light interferometry measures the post-mortem height 

profile. Finally, chemical changes inside the wear track are characterized by x-ray 

photoelectron emission microscopy combined with near-edge x-ray absorption fine 

structure (X-PEEM-NEXAFS) spectromicroscopy. Results for ta-C and UNCD show that 
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both films, like single crystal diamond, perform better at lower loads or with higher 

amounts of RH in the environment. Previous hypotheses for this suggested that 

lubrication for these films either comes in the form of graphitization (converting carbon 

from diamond-type bonding to graphite-like bonding) or by passivation (the termination 

of broken carbon bonds by species in the environment, such as water). All spectroscopic 

evidence shows no evidence of graphitization, but support the passivation hypothesis. 

Furthermore, the spectroscopy shows that the passivation is in the form of hydroxyl 

groups, most likely from water. This affects the run-in (period at the start of sliding of 

high friction as asperities are being smoothed) behavior of these films. The level of 

passivation also controls whether the films have high or low friction. 
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1. Introduction 
------------------------------------- 

1.1 Study of Friction 
  

Tribology is the study of two bodies in contacting, relative motion, and requires 

knowledge of a vast and varied number of disciplines to fully comprehend [1.1]. 

Thermodynamics, solid state physics, mechanics, chemistry, and statistical analysis are 

just a few examples. Considering how persistent tribological challenges have been for 

mankind (from the discovery of fire and the building of the pyramids to engineering 

components for satellites in outer space) [1.2], there is still a tremendous amount to be 

understood about many of the fundamental problems that arise due to adhesion, friction, 

and wear. In fact, there is a lack of quantitative models that predict macroscopic friction 

coefficients and wear rates between surfaces given their material type(s), contact 

geometry, load, sliding speed, and environmental conditions. Friction also varies at 

different length scales. Single asperities at the nanoscale have a much different 

tribological behavior than multiple asperities at the macroscale, even for similar materials 

and environmental conditions [1.3]. Because tribological interfaces are sensitive to 

sliding conditions (e.g., applied load, contact geometry, sliding velocity, chemical 

environment), it can often be difficult to perform an experiment in which only one of 

these variables is carefully controlled and studied. Therefore, experimental design and 

control is a crucial component of studying any tribological system. 
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The main goal of this thesis is to discover, explore, and understand fundamental 

friction and wear mechanisms in ultrastrong carbon-based thin film materials. Potential 

benefits of this understanding include developing and implementing new technologies 

(such as microelectromechanical system devices that have contacting, sliding parts) that 

would have been previously unfeasible because of issues with friction and wear, as well 

as making existing tribological systems (such as atomic force microscope probes, which 

can be coated with carbon films) run substantially more efficiently over longer lifetimes.  

A major problem in many mechanical systems is energy loss due to friction. 

Furthermore, as these systems wear and fatigue they break down, which costs time and 

money to repair or replace. Dr. H. Peter Jost, who chaired the panel that first coined the 

term ‘tribology,’ made initial estimates that approximately one percent of the United 

Kingdom’s gross national product could be saved “…by better application of tribological 

principles and practices.” [1.4] Current estimates are as high as two to seven percent [1.5, 

6], which for the United States would mean ~$290 billion to over $1 trillion saved, 

annually. Understanding the way tribological mechanisms work will also aid in 

developing and designing new technologies, as well as ensuring that mechanical systems 

suffer fewer losses in efficiency due to friction, have lower wear, and stay operable over 

a longer lifetime. 

Moreover, the lack of fundamental insight into such a common phenomenon 

presents a remarkable opportunity for scientific exploration. What are the underlying 

mechanisms that cause friction? How does friction depend on chemical and mechanical 
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material properties? Can friction be controlled simply by changing the environmental 

conditions? 

Overall, the study of tribology presents a compelling and scientific challenge that 

has important implications for many technologies and for multiple fields of science and 

engineering. 

1.2 The Ultimate Tribological Material 
  

There are a seemingly infinite number of tribological pairings that could be 

studied. Thus, it is important to study systems that, while interesting in and of 

themselves, in the long run will provide a larger benefit beyond simply the immediate 

knowledge gained. Single crystal diamond is the hardest and stiffest material known, has 

the highest thermal conductivity, and the highest acoustic velocity [1.7]. It also has 

excellent optical properties which can be tuned given the right type and quantity of 

dopants [1.8, 9]. Undoped single crystal diamond is an insulator, but doping with boron 

or nitrogen can change the electrical properties and increase the conductivity. 

In addition to examining its exceptional mechanical characteristics [1.10], the 

tribological properties of diamond have also been studied. Tools such as diamond cutting 

wheels or diamond-embedded scaifes are used to shape and polish materials with high 

hardness, including diamond itself. The friction of single crystal diamond is anisotropic, 

varying depending on the crystal face and sliding direction. Friction also depends on the 

sliding environment (i.e., vacuum, ambient, or water). It was already known from 

previous work that certain facets of diamond were easier to polish than others. Dennings 

performed experiments to quantitatively compare the relative hardness of polishing 



4 
 
diamond on different facets along all possible directions of that facet [1.11]. He found 

that the relative frictional hardness between the test sample and a reference (measured 

simultaneously) varied by 2-2.5 orders of magnitude for the two facets studied. Scientists, 

as well as researchers in the diamond industry, explained this by considering diamond to 

have a ‘grain’. Certain facets are easily polished as long as the proper polishing direction 

with respect to the grain is chosen [1.12, 13].  

When studying the environmental dependence, Bowden et al. found that 

removing the native surface layer on a diamond sample by heating the sample in medium 

vacuum increased the friction coefficient by approximately one order of magnitude 

[1.14]. Introducing pure oxygen reduced friction by forming an adsorbed oxide layer, and 

this effect was mostly (but not entirely) reversible just by increasing the vacuum again. 

They explained this by suggesting there must be some physisorbed oxygen on top of the 

chemisorbed layer. The physisorbed layer, which can be removed by increasing vacuum, 

has a large effect on the friction. Bowden et al. also showed that similar behavior was 

seen for diamond when performing tribometry tests in ultrahigh vacuum [1.15]. 

Utilizing single crystal diamond in many applications is not feasible. However, 

recent advances in the last few decades have developed the ability to grow carbon-based 

films in thin film form that share many, if not most, of the advantageous properties of 

diamond [1.16-20]. One obvious way to improve an existing tribological system is by 

coating the components with a material that has superior tribological properties [1.21]. 

Sumant et al. found that a 2 µm thick coating of ultrananocrystalline diamond reduced 

friction, lowered wear, and improved the overall performance and life span of pump 
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seals. Other films comprised of carbon with a moderate-to-high fraction of ‘diamond-

like’ bonding have been shown to have extreme properties, such as low friction 

coefficients, low wear rates, and chemical inertness, that make them ideal coating 

candidates, especially when compared to many known materials [1.22-26]. The 

mechanical and tribological properties depend on the exact composition, morphology, 

and topology of the material. To this end, this thesis will focus on carbon-based material 

systems that are considered to be diamond or diamond-like, the varieties of which are 

discussed next. 

1.3 Approaching the Ideal 
 

1.3.1 Categories of Carbon Films 

 

Fig. 1.1: Schematic showing a) tetrahedrally bonded (sp3-bonded) atoms, such as 
those found in single crystal diamond, and b) trigonally bonded (sp2-bonded) atoms, 

such as those found in highly oriented pyrolytic graphite (HOPG). 

 

 Fig. 1.1 is a schematic of the two types of bonding that carbon films are primarily 

comprised. Carbon atoms have four valence electrons that can form covalent bonds. 
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There are two electrons in the 2s shell and two electrons in the 2p shell (2s22p2). When 

these four electrons form four covalent bonds, the electronic orbitals are said to have 

rehybridized such that the one 2s orbital mixes with the three 2p orbitals to form four 

equivalent sp3-hybridized orbitals. Each of these four orbitals points from the C atom 

toward the corners of a tetrahedron, with the bond angle between any two bonds being 

~109.5°. These bonds are called sigma (σ) bonds because they have an s orbital shape 

when viewed along the bond direction. If only three bonds are formed, the one 2s orbital 

mixes with just two of the 2p orbitals to form three sp2 orbitals. Each orbital points from 

the C atom toward the corners of an equilateral triangle, with the bond angle between any 

two bonds being 120°. The remaining electron occupies the unfilled p orbital. If this half-

filled p orbital interacts with another half-filled p orbital of a nearby sp2 bonded carbon 

atom, as it does in graphite, the bond is referred to as a pi (π) bond. The name comes 

from the bond shape, as the bond looks like a p orbital when viewed along the bond 

direction, and the bonding direction is not along the orbital direction. Atoms that share 

both a σ and a π bond are bonded more strongly than atoms that just share a σ bond, due 

to a stronger overlap of electronic orbitals. The bond length between these atoms is also 

shorter, as can be seen when comparing the bond length of highly oriented pyrolitic 

graphite (HOPG), 0.142 nm, with that of single crystal diamond, 0.154 nm. The Young’s 

modulus of graphite, in-plane, is found to be 1 TPa [1.27, 28], similar to diamond. 

However, in comparison, the out-of-plane modulus for graphite is extremely low. 

Graphite planes are only weakly bonded to each other through van der Waals forces, and 

this weak interaction allows them to easily compress, separate, and slip over each other. 
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It is this behavior that makes graphite such a good solid lubricant. The lack of any weak 

bonding direction in diamond leads to a directionally-averaged bulk modulus that is much 

higher than that of graphite. Because of this, films with a higher ratio of sp2-bonded 

carbon generally have a lower Young's modulus and lower hardness than those with a 

higher fraction of sp3-bonded carbon. For these materials, the order of the Young's 

modulus and hardness, from lowest to highest, would be amorphous carbon (a-C) and 

diamond-like carbon (DLC), tetrahedral amorphous carbon (ta-C), and then 

polycrystalline diamond. 

Carbon films can be separated into two broad categories based on their 

composition and the environments in which they best perform: hydrogenated and non-

hydrogenated (H-free) films. Fig. 1.2 is a ternary diagram (adapted from [1.29]) with the 

corners representing the fraction of sp2-bonded carbon, fraction of sp3-bonded carbon, 

and at.% hydrogen. 

Hydrogenated films, which intentionally have hydrogen incorporated as part of 

the deposition process, typically perform best in inert or vacuum environments [1.30-33]. 

They are amorphous and have considerable fractions of sp2-bonded (graphite-like), with 

the remaining fraction being mostly sp3-bonded (diamond-like) carbon. Examples of 

hydrogenated films include DLC and hydrogenated amorphous carbon (a-C:H) (Fig. 1.2, 

shown at the center). 

Non-hydrogenated films, that is, materials with very little or no hydrogen, 

perform better in environments with a significant partial pressure of hydrogen, oxygen, 

water vapor, or some other reactive species [1.34-37]. They include both polycrystalline 
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and amorphous films, and, while they can be amorphous with a significant fraction of 

sp2-bonded carbon, the best films, tribologically (highest hardness, lowest wear), have a 

high fraction of sp3-bonded carbon. Examples of H-free films with a high fraction of sp3-

bonded carbon include ultrananocrystalline diamond (UNCD) and ta-C (Fig. 1.2). 

 

Fig. 1.2: Adapted ternary diagram from [1.38] showing different types of carbon 
films. 

 

1.3.2 Hydrogenated Films 
 

DLC and a-C:H films can be deposited with a variety of techniques that utilize 

different conditions and various source gases. The earliest work with these films was in 

1971, by Aisenberg and Chabot [1.39]. Hydrogenated carbon films find applications as 

coatings for razor shaving blades, some components in car engine parts, and, most 
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notably, as the protective coating on computer hard drives. Common growth techniques 

include plasma enhanced chemical vapor deposition (PECVD), plasma immersion ion 

deposition (PIID) ion bombardment, cathodic vacuum arc, pulsed laser deposition, and 

sputtering [1.40]. The attribute shared by all of these methods is that low energy carbon 

or hydrocarbon ions are accelerated and deposited onto the surface of the substrate, which 

leads to the growth of a continuous film. For PECVD and PIID, a source gas, such as 

acetylene, is used to form a plasma which then condenses onto the substrate. The other 

techniques utilize a carbon target (usually graphite) as the source material which is then 

sputtered or ablated to generate carbon ions that are directed toward the substrate. 

Hydrogen may also be added to some of these systems (or more heavily hydrogenated 

source gases used) to increase the amount of H in the film. Depositions are typically done 

at room temperature, though changing the substrate temperature can affect the film 

properties by changing the energy and mobility of the deposited species.  

Because the films are grown from ions impacting into the surface, it is possible 

that there can be residual stress present in the as-grown film. However, for most 

techniques there exists a “sweet spot” where the ions have enough energy to both be 

incorporated into the film and also have the mobility to find a low stress bonding 

environment. The films are grown in a partial vacuum so that the ionized species will 

have a longer mean free path. These types of films also have a relatively slow growth 

rate, meaning they can be grown with extremely good control over the thickness even at 

the level of a few nanometers (which is important for the hard drive application), and are 

highly conformal with the substrate. Due to the amorphous nature of the film, and the 
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growth kinetics, the as-grown film surfaces are very smooth [1.41]. DLC and a-C:H films 

typically have a high fraction of hydrogen (30-50 at.%) [1.42] incorporated with the 

carbon atoms (Fig. 1.3). These films are only stable up to 300-400 ºC, after which the 

hydrogen in the film begins to desorb and the film structure changes [1.43, 44]. Silicon 

can be doped into a-C:H structures to improve the thermal stability [1.45]. Studies have 

shown that there is both atomic hydrogen and H2 molecules that are unbound and trapped 

inside the material [1.46]. There is also a significant fraction of sp2-bonded carbon in 

these films. 

 

Fig. 1.3: Molecular dynamics simulation of the bonding and structure of a 
hydrogenated DLC film [1.47]. The lines represent bonds. 

 

Hydrogenated films typically perform best in vacuum or inert environments. 

Hydrogen in these films is responsible for the low friction, as dangling carbon bonds 
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formed during sliding are quickly passivated by available hydrogen [1.48]. As shear 

stresses and wear break carbon bonds on the surface, the hydrogen in the film migrates to 

the surface. This passivates the dangling bonds, inhibiting them from bonding across the 

interface, and reduces friction and wear [1.49]. It has been shown that if the surface of the 

film has a lower hydrogen concentration, or if the hydrogen in that region is depleted 

(thermally, by wear, or by diffusion) then the friction will increase. This was 

demonstrated by Eryilmaz et al., who deposited H-free DLC films and then tested their 

friction performance before and after treating the surface with hydrogen plasma [1.50]. 

The as-grown films had a friction coefficient of 0.1 and the film was worn through after 

~12 m of sliding. After 3 min. of hydrogen plasma treatment on the same surfaces, the 

friction coefficient was ~0.02 and lasted for over 400 m of sliding. Also supporting this 

hypothesis, performing tribometry tests in the presence of atomic (from dissociated 

molecular) hydrogen leads to lower friction and wear by replenishing the surfaces with 

atomic H [1.51]. 

However, introducing other gaseous species (namely water and molecular 

oxygen) into the environment can have a strong effect on the tribological performance 

[1.52-54]. Both of these species interact with the surface and negatively impact the 

friction performance. For DLC, this effect can be understood as a fractional coverage 

process, whereby the surface has some coverage of species that provide low friction, and 

the remaining coverage causes high friction [1.55, 56]. Each sliding pass over an area has 

the potential to remove some fraction of either type of species, after which there will be 

passivation by the high friction species. The friction coefficient is then governed by the 
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relative fractions of low and high friction species. In this way, the system can be seen to 

be dependent on load (how many species are removed per pass), sliding velocity (time 

between passes during which passivating species can bond to the surface), and partial 

pressure of ambient species (impingement rate onto the surface). These films will also 

have low friction in inert environments when run against other counterfaces (e.g., steel). 

However, the initial friction will be high as wear of the DLC film occurs. This is 

followed by a transfer of the DLC material from the substrate to the counterface until a 

transfer film has built up. In this case, it is a process by which the interface effectively 

becomes self-mated again, resulting in good tribological behavior [1.57-59]. 

Overall, DLC and a-C:H films have many advantages. They are very smooth as-

grown and can be grown thin and conformal to substrates. With the correct growth 

parameters, these films have very low as-grown stress. Because they are grown with an 

implantation process, often with a bonding layer, they can be applied to a range of 

substrate materials. They perform extremely well in vacuum or inert environments and 

have been shown to have one of the lowest friction coefficients (as low as 0.003) and 

wear rates (3x10-10 mm3N-1m-1) of any material pair [1.60, 61].  

  

 a-C:H soft a-C:H hard ta-C:H ta-C Diamond 
Hardness 

(GPa) <10 10-20 50 80 100 

Table 1.1: Comparison of hardnesses for hydrogenated and non-hydrogenated 
carbon materials. 

 

The drawbacks of DLC films are found in their mechanical properties and 

ambient environment sensitivity. Because of the large fraction of hydrogen and sp2-
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hybridized carbon, DLC films have a lower hardness than H-free carbon films (Table 

1.1). Since they are softer, they are more susceptible to abrasive forms of wear. This is 

especially true when run in environments known to cause higher levels of wear. Non-

ideal environments include those containing oxygen, water vapor, or other reactive, non-

hydrogen species. Studies have shown (Fig. 1.4) that exposure to water and oxygen 

poisons the film surface, increasing friction and wear [1.62]. This increased activity 

makes interfacial bonding stronger and increased friction and wear are seen. There is also 

an issue with the film properties being sensitive to the specific growth parameters. 

Changing how the carbon ions are generated, changing their kinetic energies, biasing the 

sample, and changing the substrate temperature, will affect the film composition. Altering 

the composition changes the mechanical and tribological properties. Care must be taken 

to optimize and then maintain constant growth parameters so that the films are consistent. 

However, when growing these films it is nearly impossible to change one property 

independently of all others. For instance, if one film is grown with 35 at.% hydrogen and 

has a certain sp2/sp3 carbon bonding ratio, it is not easy to grow another film with 45 at.% 

hydrogen and maintain the same sp2/sp3 ratio. All of these properties depend on one 

another, which makes growing a specific type of film very difficult. 



14 
 

  

Fig. 1.4: Plot showing friction coefficient dependence on partial pressure of water 
for UNCD and H-DLC [1.63]. 

 

1.3.3 Amorphous Carbons and Polycrystalline Diamond 
 

a-C and ta-C are closely related to DLC films with the difference being the lack of 

a significant fraction of hydrogen. Unlike DLC, however, these films perform best in 

environments that contain water vapor (including humidified ambient environments) or 

molecular hydrogen vapor. They also perform well when fully immersed in water [1.64]. 

The growth processes can be similar to that discussed above for DLC films, except that 

little hydrogen (at most a few at.%) is incorporated into the materials. The typical 

methods for growing ta-C are either with a pulsed laser deposition (PLD) technique or 

cathodic arc. For PLD, a highly pure graphite target is ablated with an excimer laser. The 

evaporated species from the target forms a plume that falls on the substrate for 
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deposition. These films are extremely smooth as-grown, with 0.1 nm r.m.s. roughness 

[1.65].  

As their name suggests, a-C and ta-C are amorphous materials with only short 

range bonding order. a-C films have a significant (> 30%) fraction of sp2-bonded carbon, 

while ta-C (which has ‘tetrahedral’ in its name to distinguish it from a-C) has 75-90% 

sp3-bonded carbon [1.66-68]. Due to its high fraction of sp2-bonded carbon, a-C, like 

DLC and a-C:H, has a lower hardness and Young's modulus. Because of the high fraction 

of sp3-bonded carbon, ta-C has a modulus that has been measured as high as 759 GPa 

[1.69]. One disadvantage of the high sp3 bonding fraction of ta-C is the high compressive 

stress that exists in the as-grown films (~2-8 GPa). This stress adversely affects 

applications that require free-standing microstructures since the coated portions will 

deform to accommodate the stress. However, this stress can be relieved by a post-growth 

annealing of the film. Annealing can either be accomplished in a vacuum furnace or with 

a pulsed laser technique. After annealing, the stress in the film is nearly zero [1.70, 71].  

The first polycrystalline films developed were micro- and nanocrystalline 

diamond (MCD and NCD, respectively). Both are grown by chemical vapor deposition. 

These films are comprised of phase-pure (consisting of ordered, crystalline bonding) 

diamond grains that can range from several micrometers down to tens of nanometers in 

size (Fig. 1.5). These grains are connected by grain boundaries that are comprised of both 

sp2- and sp3-bonded carbon, and possibly H. A larger grain size equates to a higher sp3 

fraction for the film, since all of the sp2-bonded carbon for these films resides in the grain 

boundaries (the exception being any reconstructed carbon bonds on the free surface of the 
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film and non-diamond carbon bonding at the interface between the film and the 

substrate). As the grain size decreases, the relative volume fraction between grains and 

boundaries decreases, thus increasing the sp2 fraction of the film. The growth pattern of 

these films tends to be columnar (Fig. 1.6), with the grains coarsening considerably as the 

film thickness increases. This means that thicker films are inherently rougher. Like a-C 

and ta-C, MCD and NCD have the best tribological performance in ambient or 

humidified environments. During stress and wear, the same bond breaking process occurs 

and dangling carbon bonds are formed. Bonds that are not passivated will interact 

strongly with a counterface. Additionally, since these films are much rougher, there is a 

noticeable period of run-in when fresh surfaces interact [1.72]. During this period, the 

highest asperities come into mechanical contact and are broken off or smoothed. 

However, if the films are sufficiently rough, they never run in and are extremely abrasive. 
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Fig. 1.5: SEM images of NCD for (a) ~600 nm thick coating, and (b) ~200 nm thick 
coating [1.73]. 
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Fig. 1.6: Cross-section SEM [1.74] of two NCD films showing columnar structure 
grown with (a) 1% CH4, 2% Ar, and 97% H2, and (a) 1% CH4, 80% Ar, and 19% 

H2 

 

UNCD is grown by either microwave plasma or hot filament CVD (MPCVD or 

HFCVD respectively). A methane source gas dissociates and forms reactive carbon 

species. The film grows as these carbon species arrange themselves on the surface in a 

diamond-like configuration, with the hydrogen in the environment stripping away non-

diamond species. The main difference between the growth of MCD/NCD and of UNCD 

is the renucleation rate of the diamond grains. MCD and NCD have less hydrogen 

available near the surface during growth, which means the hydrocarbon species that 

adsorb have more time to rearrange into a continuous diamond grain before renucleation 

occurs. Due to the higher amount of atomic hydrogen presence during UNCD growth, 

there is a much higher rate of hydrogen abstraction (interaction of atomic hydrogen that 

removes a terminal hydrogen from the diamond surface), and adsorbed carbon species are 

more likely to become a defect site for the renucleation of a new grain [1.75]. The current 

state-of-the-art for UNCD growth yields a typical as-grown surface roughness of ~5 nm 
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r.m.s. over a 1 x 1 µm2 area, characteristic 2-5 nm grains (Fig. 1.7), and exhibits 95-98% 

sp3 bonding [1.76]. Unlike MCD and NCD, which are rougher due to both grain size and 

grain coarsening with film thickness, UNCD retains its small grain size and low 

roughness independent of film thickness. These films can also be doped (boron for MCD, 

NCD, and UNCD, and nitrogen for UNCD) to increase their conductivity. 

  

Fig. 1.7: Transmission electron microscope image of UNCD-coated atomic force 
microscope probe showing small (~3-5 nm) grain size, courtesy of Tevis Jacobs. 

 

Historically, there have been two main hypotheses to explain the wear behavior of 

H-free materials. The remarkably low friction and wear of diamond, particularly in humid 

environments, is postulated to be due to either: 1) rehybridiziation [1.77-79] or 2) 

passivation [1.80, 81] of dangling bonds formed during sliding. Firstly, rehybridization to 
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ordered sp2 bonding is plausible because graphite is the thermodynamically stable form 

of carbon at room temperature and ambient pressure, and is lubricious due to its layered 

structure. Rehybridization may also involve the formation of lubricious amorphous sp2-

containing carbon [1.82]. The significant energy barrier that must be overcome in order 

to convert diamond to graphite or amorphous carbon (~1.0 eV/atom) [1.83] may be 

lowered by shear, frictional heating, or the introduction of oxygen and water vapor. 

Secondly, passivation has been proposed by others [1.84-86] because friction and wear 

for diamond are lower in environments containing H2 or H2O than they are in a vacuum. 

Desorption, induced either mechanically or thermally, creates dangling carbon bonds that 

increase friction and wear due to interfacial bonding [1.87]. A sufficient supply of 

passivating species overcomes this by preemptively terminating the dangling bonds. In 

ambient environments containing water and other molecules, as bonds are broken they 

can be passivated by the dissociative adsorption of hydrogen, oxygen, and water 

molecules. The C-H and C-O bonded surfaces then have reduced interfacial interactions, 

resulting in lower friction and thus wear. For water, we have shown that this 

concentration can be as little as 1.0% relative humidity (RH) [1.88]. Previous work has 

shown that it is energetically favorable for these species to dissociate (water into H- and 

OH- groups, hydrogen into two H-) and bond to an unterminated diamond surface [1.89, 

90]. However, no previous studies presented spectroscopic evidence to clearly validate 

either hypothesis. As well, no previous studies have fully explored the range of 

conditions for which the low friction and wear behavior can be maintained, nor explained 

the underlying mechanisms that determine the limits to this behavior. 
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This main purpose of this thesis is to investigate the environmental dependence of 

two hydrogen-free, hard carbon thin films: UNCD and ta-C. The specific focus will be on 

the tribological behavior in dry and humid environments, with the key question being 

what role water plays as a potential lubricant. Since friction and wear are dependent on 

bond breaking and formation, the effects of contact pressure are also studied. A 

formalized approach is developed that methodically examines: 1) tribological 

performance in a controlled environment with calibrated tribometers, 2) topographic 

characterization with optical interferometry to measure wear, and 3) chemical 

characterization including spatially resolved x-ray absorption techniques. Conclusions are 

drawn from the data as to specific wear and lubrication mechanisms for these materials 

and comparisons to previous experiments and to relevant simulations and theory are 

discussed. 

Chapter 2 puts forth a detailed description of the various sample preparation 

techniques, the experimental equipment and settings, and specific analysis methods. A set 

of experiments for ta-C and UNCD that varies both contact pressure and RH is described 

in Chapter 3. Chapter 4 covers a peculiar phenomenon seen for UNCD whereby 

decreasing the RH during sliding below a certain threshold causes friction to increase by 

1-2 orders of magnitude. Increasing the RH again over the threshold (with some 

hysteresis) recovers the system to low friction. The origins of this dramatic and newly 

observed behavior are also discussed. Chapter 5 describes a newly-built instrument at the 

National Synchrotron Light Source that was used to examine both counterfaces of a 

UNCD self-mated contact after tribological testing. Finally, the conclusions that connect 
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all of these results are examined in Chapter 6, and these conclusions are related to the 

larger scope of carbon film tribology. The Appendix lists publications by the author as 

well as analysis code written to support this work. 
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2. Experimental Methods 
------------------------------------- 

2.1 Film Growth 

 This thesis focuses on two ultra-hard, nearly hydrogen-free (H-free) carbon films, 

tetrahedral amorphous carbon (ta-C) and ultrananocrystalline diamond (UNCD). These 

are two of the smoothest carbon films of their respective types. ta-C is characterized by 

extremely low roughness, and UNCD is the smoothest (independent of total thickness) 

as-grown polycrystalline diamond film yet developed. Since they both are predominantly 

comprised of sp3-bonded carbon, they have higher moduli and hardnesses [2.1-3] than 

DLC or a-C films, and, for some UNCD films, the values approach that for single crystal 

diamond [2.4]. 

All studies conducted herein investigate self-mated interfaces. This means both 

counterfaces are coated with the same material (in most cases at the same time in the 

particular deposition system). Typically, Si flats (1x1 cm2) and Si3N4 spheres (Cerbec, 3 

mm diameter, high polish grade) are simultaneously coated with either ta-C or UNCD. 

Si3N4 spheres are used since they are relatively inexpensive and easily attainable. They 

are also polished to a ~4 nm r.m.s. roughness during the manufacturing process. To create 

a reference mark for subsequent processes such as film growth, the spheres are polished 

using a polishing wheel with 180 grit SiC paper to produce a small flat spot. The spheres 

are adhered to a metal stub using a meltable epoxy and then pressed against the polishing 

wheel and worn until a flat portion ~1.5 mm across is discernible by the naked eye. 

During subsequent growth, this flat portion is placed away from the growth source. For 
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tribometry the flat portion is mounted on a flexure (described below), away from the 

contact. Since the coating is thin and often indistinguishable from the sphere, this 

polishing step removes the uncertainty of knowing which side the coating is on for 

tribometer experiments. After tribometry, the wear scar will be nearly opposite the 

polished flat, providing a reproducible spot for mounting the sphere to measure 

topography or chemistry. 

 The ta-C films are deposited at Sandia National Laboratory using pulsed laser 

deposition [2.5, 6]. Typically, ta-C has an as-grown surface roughness of ~1 nm root-

mean-squared (r.m.s.) roughness (measured over a 1x1 µm2 area [2.7]) and can be as low 

as 0.1 nm or as high as 30 nm. The film is comprised of an amorphous network of carbon 

that is 80% sp3-bonded (characterized by nuclear magnetic resonance spectroscopy), with 

the remaining 20% being sp2-bonded [2.8]. Fig. 2.1 shows a simulated bonding structure 

of ta-C made up of 64 total atoms, using Car-Parrinello first principles molecular 

dynamics. In this simulation, 42 sp3-bonded carbon atoms form groups of three or four 

atoms in rings, and the 22 sp2-bonded carbon atoms cluster into extended networks [2.9].  

Growth is carried out at room temperature using a KrF excimer laser (248 nm). A 

pure graphite target is rotated and ablated as the carbon source. Carbon ions with energies 

centered at 100 eV are deposited onto the surface. Deposition is typically carried out at 

room temperature, though varying the substrate temperature can change the properties of 

the film, such as conductivity [2.10]. As-grown ta-C films have a relatively high amount 

of residual compressive stress (typically 8 GPa for the growth conditions used here), so a 

post-growth, rapid thermal annealing treatment at 600 °C for 5 minutes is applied to all 
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ta-C films in order to relieve the stress [2.11]. This annealing process causes a 

restructuring of the film that relieves stress by reordering the bonds without significantly 

changing the bonding hybridization [2.12]. This step is especially important for 

fabricating devices out of ta-C. If annealing is not performed, patterned structures that are 

released after growth will deform due to the residual stresses and stress gradients, which 

can render a device useless. Additionally, for the case where the ta-C film is used as a 

tribological coating, film failure by delamination is more likely to occur when the film 

contains a high amount of stress [2.6]. 

 

Fig. 2.1: Representative section of a ta-C network comprised of 64 atoms. Dark 
spheres are trigonally (3-fold) coordinated and light spheres are tetrahedrally (4-

fold) coordinated [2.13] 

 

UNCD is deposited at Argonne National Laboratory using a 2.45 GHz microwave 

plasma chemical vapor deposition technique, in a commercial IPLAS (Innovative Plasma 
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Systems GmbH, Troisdorf, Germany) system [2.14]. The current state-of-the-art for 

UNCD growth yields a film with 2-5 nm diamond grains and grain boundaries less than 1 

nm wide. UNCD has 95-98% sp3 bonding, with the remaining fraction of sp2-bonded 

carbon in the grain boundaries and on the surface [2.15]. Typical as-grown surface 

roughness is ~5 nm r.m.s. over a 1x1 µm2 area. 

Substrates are ultrasonically pretreated with nanodiamond suspension in dimethyl 

sulfoxide (minimum grain size ~4 nm diameter; ITC, Inc., Raleigh, NC) [2.15]. Gas flow 

rates during growth are 49.2/0.8 using an argon/methane (Ar/CH4) gas chemistry. The 

chamber pressure is 140 mbar and the substrate temperature is set to 780 °C. Film growth 

occurs using the diamond-seeded surface as a nucleation layer. The plasma dissociates 

the methane and produces atomic hydrogen as well as energetic carbon species (primarily 

C1). The carbon species bond to the surface in a diamond-like fashion, growing phase 

pure diamond grains separated by grain boundaries that are a fraction of a nm thick (Fig. 

2.2) [2.16]. Hydrogen abstraction plays in an important role during this process by 

preferentially attacking sp2-bonded carbon atoms and removing them from the surface, as 

well as aiding the addition of C1 species to the growing film. High renucleation rates (a 

function of the growth temperature and available hydrogen) are the key to keeping the 

grain size low, as well as the grain boundary width small, for these films. Unlike 

nanocrystalline diamond (NCD) films, which suffer from grain coarsening as a function 

of film thickness (eventually becoming microcrystalline), UNCD grains remain the same 

size independent of film thickness. 
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Fig. 2.2: High resolution TEM image showing UNCD grains and grain boundary 
(GB) [2.17] 

 

2.2 Tribometry 

After deposition on the flats and spheres, these films are used for self-mated 

tribometry tests that were carried out in the lab of Prof. W.G. Sawyer at the University of 

Florida by other personnel (Prof. W.G. Sawyer, Dr. M.A. Hamilton, Dr. P.L. Dickrell, 

A.C. Dunn, and J.H. Keith) as well as the author himself. Self-mated interfaces are 

simpler and better suited for basic studies of tribological behavior, since they avoid the 

complexities that arise from having to consider additional materials, chemical 

compositions, and mechanical properties. 

GB

1 nm

GB

1 nm
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Tribometers are devices that allow for the study of friction and wear at the 

macroscale for a range of material pairings while under controlled conditions. These 

conditions include load, contact geometry, sliding geometry, temperature (of either the 

environment or the substrate), and environment (e.g., vacuum, controlled partial pressure 

of gas). Typically, a spherical pin is brought into contact with a flat substrate under a 

fixed load. The substrate and pin can be made of or coated by the same material (meaning 

the interface is ‘self-mated’) or they can be different materials. After contact is 

established, the substrate and pin are then put into relative motion. This motion can be 

either linear or circular (pin-on-disk). The resulting worn region on the substrate will 

henceforth be referred to as a wear track. This is distinguished from the worn region on 

the sphere, which will be referred to as a wear scar. Linear motion can be either 

unidirectional or reciprocating. With unidirectional sliding, the pin makes one linear 

sliding pass, is brought out of contact at the end of the wear track, and then is brought 

back into contact where the sliding pass first began. With reciprocating motion, the pin 

never leaves contact with the substrate, and a full sliding cycle involves two back-and-

forth passes in opposite directions along the same track. Circular or pin-on-disk motion 

involves the substrate rotating at a constant specified angular velocity such that the pin 

will prescribe a circular wear track on the substrate about the center axis of rotation. 

There are several benefits to pin-on-disk experiments. One is that the sliding 

speed is constant along every point of the track. In contrast, during linear sliding there 

must necessarily be acceleration and deceleration periods at the beginning and ending of 

the track. The sliding velocity during linear sliding is determined by the maximum 
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velocity that is reached and maintained through the middle portion of the track. The other 

benefit of pin-on-disk motion is a fixed exposure time. The exposure time is the amount 

of time that elapses between the pin contacting the same portion of the track. Since the 

pin-on-disk configuration has a constant sliding velocity, there is a well-defined, constant 

exposure time that is equal to the inverse of the rotation frequency. Reciprocation only 

has one well-defined point of constant exposure time, located at the center of the track. 

All other points experience staggered times between sliding passes. However, linear wear 

tracks are easier to create and can be packed on a sample with a much higher density, 

which makes subsequent topographic and chemical analysis easier. For this reason, all of 

the tracks discussed in this document are made in a linear fashion. 

 

 

Fig. 2.3: Picture of tribometer setup. This version is using capacitive probes to 
detect normal and lateral deflections of the dual flexure. 
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The substrate is placed on an x-y micrometer stage that is used to position the 

sample laterally under the pin and set the location for the wear tracks (Fig. 2.3). Using 

super glue, the pin is affixed to the end of a dual flexure cantilever that can bend both 

normal and transverse to the surface. Displacement sensors are mounted at the end of the 

flexure. The original tribometer design involved two mirrors [2.18], one each mounted 

such that the surface normal of the mirrors was along the normal and lateral bending 

direction of the flexure, respectively. A schematic of this is shown in Fig. 2.4. Lasers 

reflect off the mirror surfaces and detect displacements of the flexure both normal and 

transverse to the substrate. The mirror/laser setup was used to take the data in Chapter 3. 

The current design utilizes capacitive probes instead of lasers [2.19] (Fig. 2.3), and a 

metal box is affixed to the end of the flexure instead of mirrors. In this case, the 

displacement is detected by the change in capacitance as measured between the probe and 

the side of the metal box. The capacitive setup was used to take the data in Chapter 4 and 

Chapter 5. A z-micrometer is used for coarse positioning of the flexure away and toward 

the substrate. The flexure deflection normal to the sample surface is calibrated 

(displacement as a function of force), and this deflection is used to measure the normal 

load applied to the substrate as the pair is brought into contact. A software-driven stepper 

motor controls the fine positioning necessary to apply the initial load and also to control 

the displacement to keep the load at the desired set point during the testing. As the pin 

slides along the track, the tribometer records, as a function of position, the normal force 

(measured from the normal deflection of the cantilever) and lateral force (caused by the 

friction between the pin and substrate, and measured by the lateral deflection of the 



35 
 
cantilever). Dividing this friction force by the normal force yields the friction coefficient 

as a function of position. Friction coefficient measurements are obtained from data 

averaged over the middle 90% of the track, where the velocity is nominally constant, 

ignoring the endpoints of the track where the sample is accelerating or decelerating. The 

total number of sliding cycles is set in the software by the user, as well as how many data 

sets of the individual cycles to save. The program records sliding time, cycle number, 

calculated friction coefficient, lateral force, normal force, wear track position, sliding 

speed, z-stage displacement, and humidity for every point along the wear track (typically 

~500 measured points per sliding cycle). Saving all of the data for every sliding cycle 

quickly fills up hard drive space. To reduce data storage needs, usually only every 20th 

cycle has the full cycle data saved. The main output file contains just the average 

quantities for each entire cycle. 
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Fig. 2.4: Tribometer schematic showing dual flexure, optical displacement sensors, 
mirrors, and reciprocating substrate holder. 
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Fig. 2.5: Experimental tribometer setup. Gas flow controllers, one for dry Ar and 
one for Ar bubbled through de-ionized (DI) water, control relative humidity 

(measured with a hygrometer) in environmental chamber. Computer controls 
tribometer and records data. 

 

The reciprocating tribometer (described in more detail here [2.18]) is housed 

inside an environmentally-controlled chamber (Fig. 2.5). Humidity is introduced by 

controlling the flow of dry Ar first through a beaker containing DI water, then into an 

empty beaker (to prevent water droplets from being blown directly near the tribometer), 

and finally fed into the chamber. This occurs in parallel with a flow of dry Ar alone. The 

Ar source is blowoff from a dewar that is research-grade quality to ensure the lowest 

possible levels of contaminants (e.g. water). Extremely dry tests (relative humidity (RH) 

below 1.5%) require a dry Ar source that is absent of any residual water. Even with a 

research-grade source, it takes several hours of flowing Ar to reduce the RH to these low 
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levels. RH is measured with a DewPro MMY 2650 hygrometer that is accurate to ±0.1% 

with a lower detection limit of 0.1%. The user must manually control the RH by adjusting 

the two sources to the correct levels. The software records the value from the hygrometer 

while measuring the other parameters. 

A close-up of a UNCD sample mounted on the reciprocating stub is shown in Fig. 

2.6. As mentioned, the micrometer control of the stage position ensures the location of 

the tracks can be carefully and precisely placed. This increases the density of tracks on 

the sample, and makes further measurements easier. This is especially important in 

photoelectron emission microscopy (discussed in Section 2.5) where the field of view 

(FOV) is only ~40x80 µm2. Scanning an 8x8 mm2 region with this small FOV looking 

for 40x500 µm2 tracks is bad enough. If they are randomly placed, it would only be 

worse.  

 

Fig. 2.6: Zoomed image showing UNCD-coated sphere and flat in tribometer. 
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 Fig. 2.7 shows an optical image of an array of tracks made on a UNCD sample. 

This shows the high areal density of making linear wear tracks. They are spaced 1 mm in 

both directions to prevent any wear debris from a track affecting other areas of the 

sample. The debris rarely is more than 100 μm away from a track, except in the case of 

extreme wear (e.g. Fig. 2.7, right column, top and bottom tracks). 

 

Fig. 2.7: Optical images of reciprocating wear tracks on a UNCD film 

 

2.3 Profilometry 

Scanning white light interferometry (SWLI) is a large area imaging technique that 

measures the 3D height profile of a surface with nanometer-level accuracy. It can be used 
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to measure the height of the debris and worn areas on the film surface. In addition to 

being a fast and reproducible, SWLI is a non-contact measurement method. This is 

especially important for tribological experiments because it means the height 

characterization will not affect the sample surface topography or chemistry, which would 

reduce the value of subsequent chemical measurements. The vertical resolution for this 

method is high (< 1 nm), but the lateral resolution is dependent on the optics and charge-

couple device (CCD) camera used. For typical lens settings (20x objective, 0.5x internal 

magnification), one pixel encompasses ~1.1 x ~1.1 µm2. This relatively large pixel size, 

combined with the smoothness of ta-C and UNCD, means that SWLI cannot accurately 

measure the surface roughness of these films below a ~1 µm lateral dimension. Wear 

tracks are typically ~50 µm wide (determined by the applied load and corresponding 

amount of contact area and wear) and ~600 µm long (determined by the stroke of the 

reciprocating wear tests). The optical objectives available allow measurements of the 

entire wear track in one FOV. Plotting the height profile in 3D shows the track profile 

(Fig. 2.8). From this, the average and maximum wear depth of different tracks can be 

compared. Additionally, by summing the volume of every pixel that has depth below the 

initial height, one can calculate the wear volume. 
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Fig. 2.8: Profilometry image of a UNCD wear track created at 1.0N, 1.0% relative 
humidity. The height scaling is amplified by a factor of 40 compared to the lateral 

dimensions. 

 

The SWLI technique obtains height information as follows. An interference 

pattern is produced between light reflected from the test surface and the reflected light 

from a flat reference surface. This summed image is measured by a camera as a series of 

fringes caused by the constructive or destructive interference of light from the two 

surfaces. The technique is referred to as 'white light' because it is a light source with 

center wavelength of 546 nm, but has a 120 nm full width, so it emits a range of 

frequencies. Because of this, the beam has a finite coherence length. As the piezo motor 

ramps the objective and reference surface through a range of distances from the test 

surface, each point on the surface will have several heights with constructive interference 

(fringe maxima). However, due to the coherent nature of the beam, only one height will 



42 
 
give the brightest maximum. The software finds the height at which each pixel has a 

calculated maximum coherent interference with the light from the reference mirror, and 

then backs out a relative height value for that point. Because this technique relies on the 

intensity of the interference signal, sections of the surface that have poor reflection due to 

roughness or extreme geometry, such as a debris particle or the sidewall of a wear track, 

can sometimes produce dropped pixels. 

To find the wear volume removed for each track, optical profilometry 

measurements are performed using a Zygo New View 6300 SWLI profilometer. An 

analysis routine with a graphical user interface (GUI) was designed as part of this thesis 

to convert the raw height data into a wear rate for the track. Data from a SWLI image are 

loaded in ASCII format, with the x- and y-dimension of the matrix representing CCD 

camera pixels, and the matrix value representing height in nm. The header file contains 

the conversion factors from pixel value to lateral dimensions. The images are then 

processed to remove artifacts and enable analysis of the wear volume. The first 

processing step is a plane fit. Due to the flatness and low roughness of the substrate, as 

well as the low roughness of these coatings, the as-grown film surrounding the wear track 

is treated as a plane. The user selects a region that includes all points in the image inside 

the wear track, and then these values are excluded from the plane fit. This fit is then 

subtracted from the data set, leaving the surface with the average of all non-wear track 

pixels centered at zero height. Any errant or missing points anywhere in the image are 

then flagged. Nonsensical data is identified by finding any pixel that is different in height 

by more than three times the standard deviation of the average of the surrounding pixels 
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in a 25x25 grid (excluding the center point itself). If a point is dropped during the initial 

measurement, meaning the Zygo output software sets the height value to be 

'2147483640', the Matlab code sets the value to not-a-number (NaN).  

Then all of the flagged points are replaced by values determined from an 

interpolation using a spline fit curve (one for each orthogonal direction of the data set) to 

find the best estimate for the actual height. Only the heights of non-flagged data points 

are used in the interpolating fit. The two values from the interpolation are compared. If 

they are similar, the average of the two is used for the height. If they are very dissimilar, 

the one that is closer to the neighboring average is used. This may not be the most 

rigorous way to fix dropped data points, but the bulk of these errant points occur on areas 

of debris where the true height is above the zero plane. Profilometry analysis is mostly 

used for wear volumes and wear rates, and thus is only concerned with points below the 

zero plane. Finally, the user inputs the load used during tribometry, the track length, and 

the number of cycles.  

Wear rate is then calculated using Archard’s law, which states,  

   
·

 (1) 

where K is the wear rate, V is the volume removed (in mm3), N is the normal load (in 

Newtons), and d is the sliding distance (in meters). The wear volume of the track is 

calculated by summing the depths of every pixel inside the track that is below the plane 

of the surrounding surface, and then multiplying those depths by the area of a pixel. 

For a wear track that is 600 μm long and 50 μm wide, assuming the uncertainty in 

the height of every pixel is 1 nm, the number of pixels is determined by finding the total 
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area of the wear track. The shape is assumed to be a 600x50 μm2 rectangle with two 

hemispherical ends with radius 25 μm. Then, using the 1.1x1.1 µm2 pixel size with 

uncertainty of 3%, the total number of pixels in the wear track is found by dividing the 

wear track area by the pixel area. Finally, the uncertainty in the volume is calculated by 

multiplying the number of pixels in the wear track by the area of a pixel and the 1 nm 

uncertainty in height, giving 3.2 x 10-8 mm3. Considering a track with the tribometry 

parameters that would give the highest uncertainty in the wear rate (ta-C with a minimum 

load of 0.05 N) for 5000 cycles and a 600 µm track length, this would be an uncertainty 

in the wear rate of 1.1 x 10-7 mm3N-1m-1. 

We also use the calibrated profilometry data to ascertain the worn area of the 

sphere. Wear scar diameter is found from a sphere height profile across the center of the 

scar. A good approximation for the wear scar is a circular shape. Assuming this, the wear 

volume for the sphere is calculated from the diameter of the wear scar and using basic 

geometry to calculate the removed volume. Since the sphere and the films are not ductile 

materials, plastic deformation is considered unlikely and the change in volume is entirely 

attributed to wear (removed volume). 

Since the volume measurements are performed only once, at the end of the 

tribometer test, they are referred to as ‘single point’ wear rate values. As the majority of 

wear occurs in the first few cycles (typically the first 10 – 100), single point 

measurements do not provide steady-state wear rate information. Instead, they provide 

only an upper-bound value.  
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2.4 Nearedge Xray Absorption Fine Structure Spectroscopy 

The primary method used in this thesis for investigating the chemical structure of 

the surfaces of these materials is a synchrotron radiation technique, near-edge x-ray 

absorption fine structure (NEXAFS) spectroscopy [2.20]. This is an x-ray in, electron out 

spectroscopy technique. Monochromatic x-rays are incident on the sample. X-ray 

energies start below the ionization potential (i.e. absorption edge) of the specific element 

in question, and are increased until they are above the edge (hence the 'near-edge' in the 

name). Electron yield is collected as a function of incident x-ray energy, producing a 

spectrum. This technique reveals chemical information regarding the chemical makeup 

(the type of atoms) and chemical bonding state (how the atoms are bonded to other 

atoms) since the shape of the near-edge region is very sensitive to the local bonding. 

These spectra can be used as a chemical fingerprint of each film’s surface character. 

Because synchrotron light is polarized, the spectra can also show differences based on 

bond orientation. The ordering that occurs in crystalline structures, as well as any ordered 

bonding between the surface atoms and adsorbates, produces a different electron 

spectrum depending on the angle between various bond directions and the light 

polarization vector. Electrons that make up the signal in an electron-yield NEXAFS 

spectrum come primarily from the surface of a material (top ~10 nm). Changes to the 

surface composition or bonding, as caused by friction and wear, show up in the spectra as 

variations in peak heights and locations. Comparisons of spectra before and after 

modification can then be related to the sliding conditions and environment. The surface 
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sensitivity is particularly important because it is the surface (or very near-surface) atoms 

that will govern the tribochemical interactions during sliding.  

The measurement setup is designed to count the electrons emitted from the 

sample (e.g. as a drain current measurement obtained by connecting an ammeter to the 

conducting sample holder). The resultant data is plotted as the electron yield versus the 

incident photon energy. Electrons in the sample are excited into unoccupied anti-bonding 

states, given the right photon energy. They are usually excited from core-shell levels (Fig. 

2.9a). For the carbon and oxygen data in this thesis all of the NEXAFS data will be K-

edge data, meaning the first excited electrons come from the K shell of the atom. After 

this first electron is excited, a second electron from a higher level in the same atom will 

then relax into the hole that has been created (Fig. 2.9b). The Auger process is completed 

when a third electron (the Auger electron), at the same or lower binding energy as the 

second, absorbs the energy released by the relaxing electron and is ejected from the atom 

(Fig. 2.9c,d). By taking the binding energy of the first electron and subtracting the 

binding energies of the second and third electrons, one can calculate the initial kinetic 

energy of the Auger electron. For carbon, the typical KLL Auger electron energy is ~240-

270 eV [2.21, 22]. In diamond, the inelastic mean free path of electrons with this energy 

is ~0.5 nm. In order to escape from the material and be collected as part of the 

measurement, the starting atom must be located very near the film’s free surface. 

Electrons deeper in the sample will lose all of their kinetic energy before escaping. 
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Fig. 2.9: Schematic of the NEXAFS electron process, showing (a) a photon excites a 
core shell electron to an unoccupied state, (b) an electron from a bound state relaxes 

down and fills the created hole, (c) because of the relaxation, an Auger electron is 
ejected, (d) this Auger electron inelastically scatters to produce further secondaries. 

 

However, the bulk of the measured signal does not come from the Auger 

electrons, but from the secondary electrons produced during subsequent inelastic 

scattering events. As many as 40 electrons can be produced in cascade events resulting 

from the initial Auger electron [2.23]. These electrons will have lower energy than the 

Auger electron and have longer mean free paths. The effect of separating the contribution 

of these secondary electrons from the Auger electrons will be discussed below. 
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Much of the early NEXAFS work for this thesis was taken at the Synchrotron 

Radiation Center (SRC), Stoughton, WI, on the Hermon beamline, port 33. This beamline 

has an energy range of 62-1400 eV, with a photon flux (photons/second/mA) of ~2x106 

at the carbon edge (300 eV). The beam size on the sample is ~1x3 mm2. The later 

NEXAFS work was performed at the National Synchrotron Light Source (NSLS), 

Brookhaven National Laboratory, Upton, NY. The instrument is on a National Institute of 

Standards and Technology owned beamline, U7A, and is pictured in Fig. 2.10. The 

photon source is a bending magnet, and covers an energy range from 180-1600 eV. The 

flux is 2x1011 photons/second/0.1% bandwith, and resolution (ΔE/E) of ~1x10-3. 

 

Fig. 2.10: Photograph of the NEXAFS chamber (left) and imaging chamber (right) 
at the NSLS, beamline U7A. Shown are the beamline manager, Dan Fischer (left), 

and his postdoc, Cherno Jaye (right). 
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The current state-of-the-art in NEXAFS modeling makes predicting these spectra 

very difficult, and existing models are often only semi-quantitative, if at all [2.24]. One 

method that uses ab initio single-scattering calculations, FEFF [2.25], has gone through 

several revisions over the last ~20 years. The name FEFF comes from the theory's 

effective curved-wave scattering amplitude, feff. With knowledge of the atomic numbers, 

coordination numbers, and nearest-neighbor distance of each atom, the model produces a 

simulated NEXAFS spectrum that has many of the same features as the measured 

spectrum (though the agreement is worse at energies near the adsorption edge). This 

model can often correctly assign the absolute energy scale for the spectra (as this is a 

variable in the calculation). Predicting the relative peak heights is generally accurate. 

However, the absolute peak positions and heights do not fully agree between calculated 

and measured spectra. This is due to the complexity involved in solving the equations for 

the photon adsorption and electron emission of the system. As the authors themselves 

state, “An adequate molecular potential based on relativistic atomic potentials is found to 

be essential for an accurate description of [NEXAFS spectra].” [2.26] 

As previously mentioned, the photoelectrons can be collected with an ammeter 

measuring a current. The ammeter replenishes the electrons that have been emitted from 

the sample. This collection mode is known as total electron yield (TEY) as all electrons 

that leave the sample are measured. In some systems there is a positively biased grid 

placed near the sample surface that further attracts electrons. This grid is intended to 

reduce noise by preventing the electrons from interacting with the sample after they are 

emitted. A second collection method involves a collector that faces the sample and is 
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screened by a grid with a negative bias. This method is called partial electron yield (PEY) 

since the negative grid bias prevents low energy electrons from reaching the collector. 

The bias voltage is usually set to a level that is high enough to repel the low energy 

secondary electrons, but will still allow the primary and Auger electrons to pass. The 

main effect of PEY is to increase the surface sensitivity of the measurement by removing 

most of the secondary electrons from the signal. These electrons were produced by the 

inelastic scattering of the higher energy Auger electrons and emerge from further in the 

bulk of the sample because these lower energy electrons have longer mean free paths. In 

this thesis, all NEXAFS spectra reported are total electron yield unless specified 

otherwise. 

A critical step when mounting the samples to the sample holder for measurement 

is proper grounding of the sample surface. Synchrotrons are an extremely bright source of 

photons. Because of this, the number of photoemitted electrons from the sample surface, 

at photon energies higher than the adsorption edge, is also high. Since most of these films 

are coated on silicon substrates, there is a very poor conduction path through the film, the 

silicon substrate, and to the sample holder. Carbon tape is placed so that it provides a 

better conduction path between the sample holder and the surface of the film (where the 

electrons are leaving). While the carbon film might not be very conducting (undoped 

UNCD, for example, is not much more conducting than single crystal diamond), the 

conduction path over the sample surface a better alternative. Failure to ground the sample 

can cause errant data due to discharges of electrons as the sample becomes positively 

charged. 
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Upstream from the sample and collector is a gold mesh which absorbs a fraction 

(usually ~ 15%) of the incident x-rays. An ammeter is connected to this mesh and the 

photocurrent is measured as a function of photon energy. This spectrum (called the 

normalization spectrum, reference spectrum, or I0 spectrum) is needed to properly 

normalize the electron spectrum from the sample. Due to contamination in the beamline 

optics, as well as a decreasing synchrotron ring current as a function of time, the photon 

fluence on the sample surface is not a constant. Normalizing the measured sample signal 

by the simultaneously-acquired reference signal removes these effects. This is done by 

dividing the sample spectrum, point-by-point, by the reference spectrum. 

A specific normalization process is performed on all samples. First, the raw 

sample and I0 spectra (Fig. 2.11a,b) are normalized such that intensity values (at all 

photon energies) for the spectra are divided by the value of the average intensity of their 

pre-edge region (flat region before any adsorption features, e.g., 275-280 eV in Fig. 

2.11). Obviously, this normalizes the pre-edge region of both spectra to unity (Fig. 

2.11c). The raw intensity of the pre-edge for either the sample or the reference depends 

on several factors, such as the synchrotron ring current, the beam dispersion character, 

and the monochromator profile. However, by dividing every spectrum such that the pre-

edge is at the same value, all of these effects have nominally been normalized out. At this 

point, when the sample spectrum is divided by the I0 spectrum, the absolute intensity of 

the normalized spectrum is related to the chemical content of the sample. To then 

compare different spectra specifically to look at ratios of bonding changes in the pre-edge 

region, the final step is to subtract the pre-edge region to zero and then divide the post-
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edge region (typically an average around 320 eV for carbon) to one (Fig. 2.11d). If 

necessary, a linear fit is performed on the pre-edge and subtracted from the entire 

spectrum. This removes effects from the different absorption profile between the sample 

electron collector and the reference electron collector. Finally, the energy axis for the 

data is corrected. Due to the nature of the beamline optics, the absolute photon energies 

are never exactly correct. This shift can be corrected in some cases by using known 

features in the reference spectrum. For example, the main dip in a carbon I0 spectrum 

taken on the Hermon beamline at the SRC is located at 284.57 eV. By calculating the 

difference between the dip in the measured I0 spectrum and this known value, both the I0 

spectrum and the sample spectrum can be shifted to the correct energy. For most 

beamlines this type of feature isn't well known. In that case the spectra are shifted using 

known features of the unmodified material, such as the C 1s π* transition for ta-C at 

285.0 eV, or the location of the exciton feature at 289.3 eV for UNCD. 

The above normalization process works very well for elements in abundance, but 

it should be noted that it is not always possible for other elements that have a lower 

concentration. For instance, oxygen is a small component of as-grown ta-C and UNCD 

films. Taking oxygen K-edge data on these samples will measure a weak signal that is 

less distinguishable from the background shape of the x-ray flux. Because of this, the line 

shape overall is tilted, mirroring the profile of the incident beam flux. When this occurs it 

rarely makes sense to attempt to linear fit or post-edge normalize these spectra. As such, 

they are often presented as only processed after the I0 normalization (right after the 

division in Fig. 2.11c).  
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Fig. 2.11: Example of NEXAFS data taken at the SRC showing (a) raw sample data 
measured as current vs. photon energy, (b) I0 spectrum as current vs. photon 

energy, (c) sample and current spectrum after pre-edge division to one, and (d) 
normalized spectrum with pre-edge subtraction to zero and post-edge division to 

one 

 

A second critical processing step is determining the absolute energy position of 

the spectrum. There is always some variability (as high as ~5 eV) in the absolute energy 

set for the monochromator as compared to the actual photon energy. There are different 

techniques for correcting this discrepancy. In some beamlines, the absorption features in 
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the reference spectrum are well defined and the energy axis can be shifted to line up these 

features with known values. In other beamlines, there are additional transmissive 

references placed upstream of the sample with features at known energies. When neither 

of these are feasible, it is possible to shift the energy based on knowledge of the known 

features of the samples being measured. 

The ‘near-edge’ part of NEXAFS refers to the fact that the photon energies are 

selected near the absorption edge for the element being probed. For carbon, these 

energies are generally between 280-320 eV; for oxygen, between 520-560 eV. The 

unoccupied anti-bonding energy levels of covalent bonds are very sensitive to the local 

bonding environment. This phenomenon is what causes the spectra to depend markedly 

on the bonding configuration. In essence, a NEXAFS spectrum is a plot of the core-hole 

perturbed density of unoccupied states, using core electrons as a fine-tuned probe of the 

available states near and above the Fermi level. The anti-bonding levels are near the 

absorption edge for an element. This absorption edge, or 'edge jump', is a sharp increase 

in the number of electrons that occurs at the ionization energy for the atom. Incident 

photons with this energy or higher can ionize electrons completely from the atom, and 

not just into bound, unoccupied states.  

NEXAFS is the exact same process as x-ray absorption near-edge spectroscopy 

(XANES) except that, by convention, NEXAFS is the term used for spectroscopy 

performed at lower x-ray energies (less than 1000 eV). It is distinguished from extended 

x-ray absorption fine structure (EXAFS) spectroscopy, which measures the absorption 

spectrum over a much wider energy range, including energies more than 50 eV above the 
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absorption edge. NEXAFS also is distinguished from x-ray photoelectron spectroscopy 

(XPS). XPS typically uses monochromatic x-rays of a fixed energy to excite and collect 

primary electrons. By energy analyzing the emitted electrons, an XPS spectrum is a plot 

of number of emitted electrons versus their binding energy. XPS is less sensitive to local 

bonding changes than NEXAFS, since the core electron levels measured in XPS do not 

vary as much depending on the type of bond and to what the atom is bonded. 

 

 

Fig. 2.12: Reference NEXAFS spectra for relevant carbon materials 

 

Fig. 2.12 is a plot of reference spectra for single crystal diamond, UNCD, ta-C, 

and HOPG taken at the SRC. The HOPG spectrum has a strong peak at 285.5 eV which 
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is due to a C 1s π* transition for ordered sp2-hybridized carbon [2.27, 28]. This is a 

transition of an electron from a 1s core state to an unoccupied π anti-bonding state, 

referred to as π*. The spectrum also has a peak for the C 1s σ* transition at ~292 eV. 

These relative peak positions can be understand from a bonding energetic standpoint. The 

σ bonding state is the lowest energy, with π bonding states being slightly higher. The 

corresponding anti-bonding states are in reverse order, with π* states being lower than the 

σ*. This is because the low energy state for a bond depends on the amount of overlap of 

the molecular orbitals. A bonding state is shaped like the sum of the two orbitals, and the 

anti-bonding state is shaped like the difference. Two atoms sharing a σ bond, with 

orbitals pointing along the bond direction, have a larger degree of overlap than two atoms 

sharing a π bond, with orbitals pointing perpendicular to the bond direction. Likewise, the 

anti-bonding states for either σ* levels have a greater energy disparity from their σ levels 

than π* levels from π. This also explains why the HOPG σ* feature (~292 eV) is at a 

higher energy than the diamond σ* feature (~289 eV), as the shorter HOPG bond length 

means that the orbitals overlap more than in diamond.  

Typical carbon 1s spectra for ta-C have two primary identifying spectroscopic 

features. The first is a peak at 285.0 eV due to the C 1s π* transition for disordered sp2-

hybridized carbon atoms. There is a distinct shift that exists for energy of the π* orbital 

for ordered versus disordered sp2-bonded carbon, with the peak for disordered bonds 

being 0.5 eV lower. This can be explained by the fact the ordered bonding in graphite has 

π orbitals with a lower energy state than those for amorphous carbon. This means the 

anti-bonding state for graphite will be at a slightly higher energy. Since the binding 
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energy of the primary electron is at approximately the same level for all transitions, the 

difference in anti-bonding energies is seen as a peak shift. The second feature is a broad 

hump due to the C 1s σ* transitions for both sp2- and sp3-hybridzed C atoms that begins 

at ~289.0 eV. Since ta-C is amorphous and contains a range of bond lengths, the C 1s 

NEXAFS spectra lack any sharp post-edge resonances.  

For as-grown UNCD, the small peak at 285.0 eV is due to the C 1s π* transition 

for disordered sp2-hybridzed carbon, as in ta-C. Analyzing the intensity of this peak 

allows one to determine the amount of sp2-bonded carbon in the region of the film 

sampled by the NEXAFS measurement, which is found to be ~5%, similar to all UNCD 

films [2.29]. The sources of this sp2-bonded carbon are surface contamination, surface 

reconstruction, and grain boundaries. The edge jump at ~289.0 eV, the exciton peak at 

~289.3 eV, and the second band gap at 302.5 eV are all due to the C 1s σ* transition for 

ordered sp3-hybridized carbon-carbon bonds [2.20]. Single crystal diamond shares the 

same features as UNCD, except that the peak at 285.0 eV is even less pronounced. Since 

diamond is, ideally, composed of 100% sp3-bonded carbon atoms, there should be no 

feature related to π-bonded carbon. However, there is still some intensity at that energy, 

and it is likely due to surface reconstruction and some surface contamination. Hydrogen 

terminating a single crystal diamond sample leaves the surface entirely in the sp3 

coordination, and in that case, the C-H bonding C 1s σ* feature appears at 287.5 eV. 

There is a method to calculate the fraction of sp2-bonded carbon in polycrystalline 

diamond samples. It is based on the ratio of the C 1s π* peak area and the area after the 
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C 1s σ* transition for the sample spectrum and for a randomly oriented, 100% sp2-

bonded carbon reference film. The equation for the sp2 fraction is 

   (2.1) 

where Iπ*
sam and Iπ*

ref are the areas of the C 1s π* peaks for the sample and reference, 

respectively, as fitted by Gaussian peaks to the data line shape. Isam(ΔE) and Iref(ΔE) are 

the areas under the curve from 288.6 eV to 325 eV for the sample and reference, 

resepectively [2.30]. The higher energy cutoff is chosen rather arbitrarily, and is 

generally determined by the energy range over which NEXFAS data was taken. While 

not quantitative, a qualitative assessment of changing the cutoff energy results in little 

variation of the calculated sp2 fraction. While the areal intensity of the spectrum will 

increase or decrease with a higher or lower cutoff energy, it also increases and decreases 

for the reference spectrum. An example of this calculation is shown in Fig. 2.13 for a 

UNCD spectrum. The calculated sp2 fraction for this UNCD spectrum is 4.8%. 
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Fig. 2.13: (a) UNCD spectrum (black). The blue and red curves have been shifted 
down for clarity. The blue lined area is a Gaussian fit to the C 1s π* peak, and the 
red lined area is from 288.6 eV to 325 eV. (b) HOPG spectrum (black). Blue and red 

sections are the respective HOPG regions. 

 

2.5 PEEM 

Wear tracks are analyzed ex-situ using photoelectron emission microscopy 

(PEEM). PEEM is a surface-sensitive technique that characterizes the top few nm of a 

sample with high lateral resolution [2.31]. Lateral resolution better than 50 nm can be 

routinely achieved, and resolving features as small as 10 nm have been reported [2.32]. 

The benefit PEEM yields for tribochemical studies, beyond high spatial and energy 
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resolution, is its ability to produce full-field spectroscopic images that include both worn 

and unworn regions of a sample (Fig. 2.14). 

 

Fig. 2.14: (a) Example PEEM image (taken at 289 eV), and (b) extracted and 
normalized spectrum from highlighted region in (a) 
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Fig. 2.15: Image of the optics column layout for PEEM2 [2.31] 

 

 The particular system used for the work presented here is called “PEEM2” and it 

is located on beamline 7.3.1.1 at the Advanced Light Source, Berkeley, CA. This 

beamline utilizes a bending magnet source with a spherical grating monochromator for 

photon energies between 175-1500 eV. The flux is 3x1012 photons/s, with a 0.1% 
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bandwidth at 800 eV, where the resolving power (E/ΔE) is 1800. The quoted spatial 

resolution is 100 nm for typical samples. Previous work was performed on the 

spectromicroscope for the photoelectron imaging of nanostructures with x-rays 

(SPHINX) instrument on the varied line space plane grating monochromator (VLS-PGM) 

line, port 41, at the SRC.  The VLS-PGM beamline supplies photons between 70-2000 

eV from a permanent magnet undulator source. The flux is ~4x1011 photons/second/mA 

at the carbon edge. 

PEEM can be combined with NEXAFS to study tribological systems [2.33-35], 

and has been previously used to study UNCD [2.36, 37]. A schematic of the technique is 

shown in Fig. 2.16. Monochromatized x-rays are incident at a glancing angle on the 

sample (a geometric concern since the measured area is only a couple millimeters below 

the electron optics column). The sample is held at a large negative bias (-15 to -20 kV). 

Because of this large bias, samples need to be flat or nearly flat, as any features on the 

surface with even mild aspect ratios will locally concentrate the electric field. At such 

points, the bias causes field emission which, at best, distorts the electron images and, at 

worst, causes arcing between the sample and microscope. These effects prevent imaging 

due to aberrant electron emission. 
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Fig. 2.16: Schematic of the PEEM data collection process 

 

Photoelectrons are produced in the same process as described in Section 2.4 and 

accelerated by the applied field from the sample toward the electron optics column. For 

PEEM, the entire range of primary, Auger, and secondary electrons are sent through the 

aperture of the first lens of the microscope. Because of the spherical and chromatic 

aberrations of the electron optics, electrons emitted from the sample that have higher 

kinetic energy (primary and Auger electrons emitted near the sample surface), or are 

emitted at angles other than the surface normal, have different focal lengths. [2.38]. In 

order to obtain higher resolution images, the optics column for PEEM2 has an aperture 

located in the back focal plane of one of the lenses. Electron efficiency of the optical 

column is traded for spatial resolution in the final image by physically stopping those 

electrons that do not focus at the plane of this aperture. The path of these electrons take 

them further outside the circle of confusion (a measure of the area and depth of field that 

electrons with different energies/trajectories will be collected from), and the aperture 

prevents them from being imaged. In this way the aperture acts like a partial bandpass 
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filter for the electrons, accepting the largest part of the signal from the secondary 

electrons that have kinetic energy roughly equal to the work function of the sample. 

However, electrons that are emitted near the center of the image and leave the sample 

normally, regardless of energy, will be imaged. The aperture acts only as a spatial filter in 

the back focal plane, and thus is not a true energy bandpass filter.  

Overall, the signal from PEEM is closest to TEY, since excluding the higher 

energy electrons does not noticeably change the spectral character. The secondary 

electrons still account for the largest fraction of all collected electrons, for both NEXAFS 

and PEEM. After the optics column accelerates, filters, and focuses the electrons (Fig. 

2.15), they are directly converted to visible light by a phosphor coated fiber optic bundle. 

The resulting image is captured by a charge coupled device (CCD) camera (Fig. 2.15). 

The photon energy is incremented and another image is captured. By varying the photon 

energy over the same range as a typical NEXAFS spectrum for a given element, a stack 

of images (referred to as a ‘movie’) is captured where each pixel represents a spatially 

resolved NEXAFS spectrum. 

In this work, prior to inserting a sample in the PEEM, the entire sample is coated 

with platinum except for the areas with wear tracks which are typically masked off by 

pieces of silicon or machined flat screw heads Fig. 2.17. This is, in part, to help with the 

same grounding issues described in Section 2.4. As with NEXAFS experiments, sample 

surfaces should be grounded with carbon tape. Careful grounding is even more important 

in the case of PEEM. While photons will cause photoelectrons to be ejected from the 

sample, there is also a high bias that is pulling the electrons into the microscope to be 
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imaged. Without a suitable path to replenish electrons to the sample, the system can build 

up a positive charge (causing image artifacts and drift) or arc due to a burst of emitted 

electrons. The other reason for the platinum coating is to provide in-situ normalization for 

the data acquired on the regions of interest. A fresh platinum coating should contain only 

trace amounts of carbon and oxygen (the main species that contaminate beamlines, and of 

extreme importance to this work). Similar to the gold mesh normalization discussed in 

Section 2.4, a movie taken on a platinum coated region of the sample will provide a 

spatially resolved, pixel-to-pixel, normalization for the data. This is important because in 

PEEM-II there is some degree of energy dispersion of the incoming photons along one 

axis of the image. However, by using an exit slit in the beamline before the chamber to 

fix the specific range of photon energies, and by using the sample-microscope distance to 

locate the beam, the ~exact same range of photons can be used on different samples. The 

microscope optics are used to fine-tune the objective focus. In this way, a movie taken on 

an area of interest and a movie taken on a Pt calibration area will have the exact same 

energy dispersion. 
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Fig. 2.17: Optical image of UNCD substrate coated with platinum (light colored 
areas) 

 

The movies acquired in these studies are normally chosen to come predominantly 

from the center of each track. Due to the acceleration and deceleration at the ends of each 

track, the center is where the exposure time and friction are best controlled and measured. 

The edges of the track are also investigated in order to characterize the debris. The 
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chemical changes between outside the track and inside the track are related to the sliding 

conditions. 

PEEM data analysis involves extracting spectra from regions of interest (ROIs) in 

each movie of interest. The software sums the intensity of every pixel from inside the 

ROI of each image, and then divides the sum by the number of pixels to get an average 

intensity. Each spectrum is plotted as the averaged intensity versus photon energy. Then 

the exact same ROIs are extracted from the platinum movie (which has been taken with 

the exact same magnification, photon energy steps, and will have the same photon energy 

dispersion characteristics). Normalization to the photon flux occurs by dividing each 

sample spectrum by its respective I0 spectrum, just like as described in Section 2.4 for 

bulk NEXAFS data. This step is required to allow spectra to be acquired between 

different movies or even from different ROIs within the same movie because the photon 

flux at a given point on the sample may not be uniform. There are also factors that affect 

the electron emission character from a sample, such as local topography. Key ROIs are 

from areas such as parts of the wear track, debris, or the unmodified film. During 

analysis, there is also one ROI that encompasses every part of the wear track visible in 

the movie. This is to obtain the average chemical signature of the wear track. Often, 

certain striations in the wear track (from points that were in intimate contact or not in 

contact) can have significantly different chemical signatures. Comparing different tracks 

with such ‘extreme’ spectra would prove meaningless. However, comparing average 

changes is both meaningful and reproducible. 
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A way of intelligently selecting the ROIs is to make an image that is the division 

of an image at an energy of a specific spectral feature by an image that is in the pre-edge 

region. These images are called division maps, or “div maps” for short. Each spectrum 

from every pixel has its own relative intensity profile that can be affected by the beam 

shape, local topography, and chemical content. By dividing the images pixel-by-pixel 

between two energies on and off bonding features, each pixel then shows the relative 

amount of the 'on' feature content. A single image can be used, or an average of a small 

range of images centered around the energy of interest. Fig. 2.18 shows this process for 

an 'on' feature energy of 287.8, representing carbon-oxygen bonding, and the 'off' image 

at 279 eV. The lighter areas in Fig. 2.18c are stronger outside the track, showing that it is 

likely debris that has been oxidized and shows a stronger signal. These div maps can then 

be used to draw ROIs on images of actual data. In this case, Fig. 2.18b shows that the 

image at 279 eV displays some contrast, but if the image at just 287.8 eV alone was 

looked at, these regions would not stand out. 
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Fig. 2.18: Images used to create a division map. (a) Image at 287.8 eV, (b) image at 
279 eV, and (c) division of (a) by (b) with the gray scale such that bright areas have 

more intensity at the 287.8 feature 

 

For this thesis, a batch processing software routine with a GUI was written in 

MatLab to perform all analysis. The software code is included in the Appendix. Spectral 

data from files that have been systematically named according to a convention specified 

in the Appendix are stored in matrices in pairs. One contains the sample spectra and the 

other the platinum spectra. The code then automatically normalizes each sample spectrum 

with its respective platinum spectrum. Subsequent processing of PEEM data is performed 

in the same manner described in Section 2.4 for NEXAFS data. There are four plots 

produced from the resultant normalized data. The first is simply a plot of the normalized 

spectra with the pre-edge of each subtracted to zero (after the division in Fig. 2.11c). The 
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second plot has had an additional linear fit to each pre-edge which is then subtracted from 

the entire spectrum. When there is a significant amount of the element being probed, this 

is often an unnecessary step. However, when there are only trace amounts of the element, 

the ratio between the absorption in this pre-edge area for the sample is different enough 

compared to the reference spectrum that the slope of the pre-edge is not zero. Part of this 

comes from the fact that the electron emission profile decays as x-ray energy increases, 

and the other factor is the difference in the absorption/emission profiles between the 

sample spectrum and the reference spectrum. A linear fit corrects for this difference. The 

third spectrum is after the post-edge (region ~30-40 eV after the absorption feature) has 

been normalized to unity. In this post-edge region (EXAFS), the spectral features are 

typically oscillating around a slowly decaying value due to modulation of the transition 

probability of electrons by the interference of electron waves scattering inside the 

material [2.39]. By normalizing this region to the same value, relative differences in the 

pre-edge features are more easily distinguished by the unaided eye. This is essentially a 

simple way to determine which pre-edge features are different by simply examining their 

respective peak heights, since this step effectively normalizes all spectra to the area under 

the curve. The final plot uses the same data from the third plot, but vertically separates 

each spectrum by an additive factor. This is so that features between spectra can be 

compared without the spectra overlapping and hiding details of their line shapes. All of 

this processing and plot creation is done to present the researcher with various ways to 

examine the data with a range of processing levels. 
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After the pre-edge normalization and division of the spectra (described as the 'first 

plot' just above), the only remaining differences will be line shape anomalies (different 

peaks relating to unique chemical bonding compositions of the sample) and total 

spectrum intensity (due to amount of atomic content). This is useful to compare if 

different regions of a sample have more or less of a certain element. For the carbon 

tribology studies in this thesis, it is often an indication of oxidation. As an example, 

consider a carbon film that has part of the FOV oxidized. The C 1s spectrum from the 

oxidized region would have an overall lower intensity than the spectrum from the non-

oxidized region because there fewer C atoms sampled in the former spectrum (Fig. 

2.19a). The O 1s NEXAFS spectra would show the opposite trend (Fig. 2.19b). 
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Fig. 2.19: NEXAFS data on as-grown and a worn/oxidized UNCD sample where (a) 
shows that the carbon intensity from the oxidized region is weaker than the as-

grown spectrum, and (b) shows the opposite trend for the oxygen spectra 

 

2.6 Chemical Mapping 

Part of this thesis work involved writing computer code to take the idea of 

division maps (discussed in Section 2.5) a step further. Division maps are rather limited 

in that only specific spectral features can be highlighted. Division maps do not allow for 

complex calculations, such as ratios of different areas, or using Gaussian fits of certain 
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peaks, or simply using the entire area of the spectrum (which is related to the amount of a 

certain atom type). 

This code produces what are called chemical maps. The first step in using the 

code is to load the entire data movie along with the entire I0 movie. Just as described in 

Section 2.4, the images corresponding to the first few eV of the spectrum are averaged 

(separately for the sample movie and the I0 movie), and then each movie is normalized 

by its pre-edge average. The images are then normalized one-by-one. Next the image is 

analyzed pixel-by-pixel. For every point there is a range of pixels averaged in all 

directions (window size set by user) to reduce the noise level involved in selecting just 

one pixel. This does reduce the effective resolution of the chemical map, but the 

variations across the entire scale of the image are generally significant enough for the 

averaging to not matter. For carbon, each spectrum is also has a linear fit performed to 

the pre-edge. After these steps the code is designed to create a series of chemical maps. 

Except for chemical maps that represent the total intensity of the spectrum (a Riemann 

sum of all area under the curve), each map is always normalized by the total area under 

the spectrum. This is done to compare relative changes in certain spectral features 

between different parts of the image. As an example for carbon, a map could be produced 

that reflects the amount of C=C bonding by taking the ratio of a Gaussian fit of the peak 

at 285.0 eV and the area of the entire spectrum. Regions of the sample with more C=C 

bonds would have a larger ratio, and would be colored differently than areas with a 

smaller ratio. An example chemical map for the sp2-fraction of a UNCD wear track is 

shown in Fig. 2.20. 
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Fig. 2.20: Example of chemical map. (a) PEEM image at the carbon K-edge from the 
end of a UNCD wear track, and (b) chemical map of the sp2-fraction showing higher 

sp2-fraction inside the wear track 

 
 This can be taken a step further to correlate the chemical information with local 

topography in the track. A separate code was written that allows a PEEM image to be 

spatially aligned with a topographic image (such as that from SWLI or atomic force 

microscopy) from the same area of a sample. An example for SWLI from a UNCD 

sample is shown in Fig. 2.21(a). The user identifies four points on each image as being at 

identical locations. The code rotates and stretches/shrinks the topographic data to match 
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the orientation and scaling of the PEEM image. Then a colored 3D image is produced 

where the height of the data represents the physical topography of the sample, and the 

color map is derived from a chemical map made from the PEEM data (Fig. 2.21b). This 

allows the researcher to visually explore the rich array of information that PEEM and 

topographic images contain and to search for correlations of interest. This technique was 

used to a limited extent in the analysis presented in this thesis; future work would benefit 

from utilizing this software more extensively. 
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Fig. 2.21: (a) Topographic data from the end of a UNCD wear track. (b) Chemical 
map from Fig. 2.20b applied to the topographic data in Fig. 2.21a. The height of the 

image uses the same scale as in (a). 
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2.7 Magnetic Imaging with NEXAFS 

As previously mentioned, the large negative bias in PEEM prevents measurement 

of non-planar surfaces. This means that the counterfaces in tribological contacts, usually 

spherical in shape, can not be characterized. As well, debris and roughness can be 

problems for obtaining a PEEM image at all. A new spatially-resolved spectroscopy tool 

has been designed at the NSLS and does not suffer these limitations [2.40]. Unlike 

PEEM, the new spectroscopic imaging technique at the NSLS can handle samples of a 

non-planar geometry. That makes this technique very attractive for the ex situ 

characterization of both the flat and the counterface (often a sphere) that comprise a 

tribological interface during testing. 

The imaging NEXAFS measurements were performed using the parallel 

processing imaging system located at the National Synchrotron Light Source (also the 

NIST beamline U7A). This synchrotron-based system collects electrons in a PEY mode, 

with a retarding bias of 150V, while magnetically guiding the emitted electrons to form 

an image of the NEXAFS signal from a ~13 x 18 mm region. The technique combines 

near edge x-ray absorption fine structure (NEXAFS) spectroscopy and a parallel process 

magnetic field electron yield optics detector. The rapid parallel processing optics detector 

produces a series of NEXAFS images (similar to PEEM) as the x-ray energy is scanned 

from below to above an elemental absorption edge. The image stack reveals information 

about the bond chemistry at the surface with 50 μm spatial resolution. Absorption spectra 

are taken using a photon energy range of 270-340 eV for the carbon K-edge, and 520-570 

eV for the oxygen K-edge, yielding energy resolutions of 0.1 eV and 0.2 eV, respectively. 
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To eliminate the effects of beam intensity fluctuations and absorption features in the 

beamline optics, the PEY signals are normalized by the absorption profile of a clean gold 

mesh located upstream from the analysis chamber. 

Data are analyzed much the same way as described in Section 2.5. In this case the 

entire image is normalized by the same reference spectrum. The ROI selection process is 

identical. As this technique uses PEY, there are differences when comparing spectra to 

those measured in PEEM, even from the same sample. The higher surface sensitivity for 

PEY results in the spectra showing an increased amount of disordered sp2 bonding. These 

samples are all prepared ex situ, and though pains are taken to keep them as clean as 

possible, there is still a certain small amount of well-adhered contamination at the 

surfaces. However, the trends are still the same, and, if anything, the increased surface 

sensitivity means that smaller changes to the surface chemistry are more easily detected. 

Fig. 2.22 shows example data from the NSLS imaging setup. Fig. 2.22a shows a 

full-field image of eleven UNCD-coated Si3N4 spheres mounted and imaged at the same 

time. The image is ~10x12 mm2, and the illumination is centered on the middle column 

of spheres. Fig. 2.22b shows just one sphere (middle column, second sphere from the 

bottom in Fig. 2.22a), and Fig. 2.22c is the extracted spectrum from the wear scar on the 

sphere. As mentioned, since this technique measures the PEY signal from the sample, the 

spectrum has a larger contribution from the surface, including any surface contamination. 

This shows up as a higher peak at ~285 eV, representing the C 1s π* transition for 

disordered carbon-carbon double bonds, as well as a significant carbon-oxygen feature at 

~286.7 eV. 
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Fig. 2.22: (a) Example image of 11 UNCD-coated Si3N4 spheres used in tribometry 
tests (from averaged images between 285.6 eV and 286.5 eV), (b) single UNCD-

coated Si3N4 sphere with ROI around wear scar, and (c) extracted carbon spectrum 
from ROI in (b) 
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3. Environmental Dependence of Friction and Wear for ta

C and UNCD  

------------------------------------- 

3.1 Introduction 

The work in this chapter focuses on examining the specific mechanism for the 

low self-mated friction of tetrahedral amorphous carbon (ta-C) and ultrananocrystalline 

diamond (UNCD) and how the low friction depends on the environment. As discussed in 

Chapter 1, it has long been known that smooth diamond surfaces can exhibit low friction 

(µ < 0.05) and wear under a range of conditions [3.1-4]. The main hypotheses for this 

mechanism are based on either graphitization [3.5-7], or chemical passivation [3.8, 9] of 

the contacting surfaces. The graphitization hypothesis proposes that shearing and local 

heating during contact converts the surface carbon bonds from a mostly sp3 configuration 

to an ordered sp2-bonded species. The term graphitization commonly, and incorrectly, is 

used to indicate both the formation of ordered graphitic material, as well as the 

rehybridization of sp3-bonded carbon into amorphous sp2-bonded carbon. The latter 

definition is a misnomer, and should be strictly referred to as amorphization or 

amorphous rehybridization to distinguish it from a process whereby sp3-hybridized 

carbon is converted into ordered, planar graphite sheets. Graphite is the 

thermodynamically stable form of carbon at room temperature and pressure, and is a 
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popular solid lubricant by itself, exhibiting friction coefficients of 0.18 [3.10] and 0.15 

[3.1], or used in solid lubricant composite films [3.11]. The low friction is assumed to 

arise from easy slip between the lamellae of graphite, which are only weakly bonded 

together by van der Waals’ forces [3.12]. An interface that starts out with a primarily 

diamond character could develop to have lower friction and wear by rehybridizing into 

ordered graphite sheets. Graphite exhibits higher friction and wear in dry or vacuum 

conditions [3.13], as do diamond and ta-C. Therefore, the formation of a graphitic surface 

phase could consistently account for the humidity dependence of friction for diamond and 

ta-C. 

The passivation hypothesis assumes that dangling carbon bonds formed by wear 

processes during sliding contact are quickly terminated to passive, stable chemical states 

by surface-reactive species in the environment (e.g. hydrogen, water, oxygen) [3.1]. For 

example, hydrogen-terminated diamond surfaces are highly stable and non-reactive. 

Friction increases if there is an insufficient flux to the surface of available species, such 

as in vacuum or dry conditions, and consequently dangling bonds are formed more 

rapidly than they are passivated. In this case, the dangling bonds can bond with other 

unsaturated bonds on the counterface causing high friction and high wear [3.8, 14-16]. 

However, surfaces that reach a steady-state where dangling bonds are sufficiently 

passivated between sliding passes will maintain low friction and wear.  

While both of these hypotheses have been proposed (some as far back as the 

1950's) neither has been definitively resolved for diamond or amorphous carbon surfaces. 
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Spectroscopic evidence would indicate whether one or both mechanisms is responsible 

for the low friction. In the case of graphitization, there would be the measurable shift in 

the C 1s π* peak location. Passivation by dissociated water species would also show up 

as oxygen and hydrogen bonding. 

In this set of experiments, self-mated ta-C and UNCD interfaces were tested at 

both high and low applied loads at different levels of relative humidity (RH). The goal is 

to determine how friction and wear change either by varying the humidity, or by sliding 

under different normal pressures for these materials, and then to study the chemical 

nature of the worn surfaces to test the two hypotheses. Spatially resolved chemical 

analysis using PEEM will allow us to determine, for the first time, if graphite is present in 

the worn interface, or if signatures of chemical passivation are present. If graphitization 

occurs, we expect that higher normal pressures, which cause higher shear stresses, should 

increase the conversion rate of sp3- to sp2-bonded carbon while dissipating more energy 

in the contact. It is also possible that higher normal stresses would impede the diffusion 

of passivating species to areas of the wear track with dangling bonds, causing more wear 

and producing more dangling bonds. This would keep the system in a high friction and 

high wear state. 

3.2 Experimental Details 

Si flats (1x1 cm2) and Si3N4 spheres (Cerbec, 3 mm diam., grade 3) were 

simultaneously coated with either ta-C or UNCD (described in Chapter 2). After 

deposition on the flats and spheres, these films were used for self-mated reciprocating 
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tribometry tests (described in Chapter 2). Two studies were performed for each type of 

film. For the first study, henceforth referred to as the constant load study, the applied load 

was fixed (1.0 N for UNCD and 0.5 N for ta-C), and RH was varied (1.0%, 2.5%, 5.0%, 

and 50.0%). For the second study, henceforth referred to as the load/RH study, the load 

was varied (either 1.0 N or 0.1 N for UNCD, corresponding to 649 MPa and 300 MPa 

initial mean Hertzian pressures, respectively, and 0.5 or 0.05 N for ta-C, corresponding to 

517 MPa and 240 MPa initial mean Hertzian pressures, respectively), and the RH was set 

at either 50.0% or 1.0%. As a reference, at 1.0% RH and ambient temperature, the 

impingement rate of water molecules to the surface is 9.6x1017 cm-2s-1. For a bare, 

unreconstructed diamond (111) surface, assuming that every H2O dissociates into OH and 

H with a sticking coefficient of 1, it would take 2.5x10-5 seconds for the surface to be 

fully passivated (neglecting the time required for species to diffuse and find an available 

site for adsorption). In all, six tracks were made per sample: four tracks at a fixed load 

(1.0 N for UNCD and 0.5 N for ta-C) with RH varying between 1.0-50.0%, and two 

tracks at either 1.0% or 50.0% RH, but with one tenth the applied load. Each track was 

made using an unworn sphere; thus, six different spheres were used to create the six 

tracks on each sample. 

For the load/RH study, it was desirable to cover an order of magnitude change in 

load. The highest applied load (0.5 N) for the ta-C tests was chosen to prevent sticking of 

the sphere to the surface that was found to occur at higher applied loads. UNCD films 

were able to sustain a higher initial load (1.0 N) without sticking. In all cases, the number 
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of sliding cycles (5,000) was chosen to ensure steady-state friction behavior (stable 

friction not changing over time). The reciprocation length was set to 600 μm for every 

track with a reciprocation rate of 2.5 Hz. However, the tracks created with higher loads 

and lower humidities were shorter (only ~420-560 μm) as the higher static friction 

prevented longer traversal distances. It is unclear from the profilometry if this distance 

evolved with the number of sliding cycles. Single point wear volumes and wear rates of 

the spheres and flats were determined from optical profilometry measurements (Zygo 

NewView 6300). The wear tracks were analyzed ex-situ using PEEM. 

3.3 Results and Discussion 

3.3.1 ConstantLoad Studies 

 

Fig. 3.1: (a) ta-C constant-load study friction plot. (b) Log-log plot of the data in (a) 
to highlight run-in and friction. 

The friction data from the constant-load study for ta-C are plotted in Fig. 3.1. The 

test performed at 1.0% RH exhibits a high, fluctuating friction coefficient (~0.6) for all 
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5000 cycles. All other data have a period of higher friction (run-in) before eventually 

achieving a friction coefficient of ~0.04. Fig. 3.1b highlights the difference in the run-in 

behavior of the track created at 50.0% RH compared to the others. The run-in for the 

50.0% RH track has a sharp drop in friction in 4 cycles and then fully runs in in less than 

40 cycles, while the run-in requires 340 cycles for 5% RH, and 920 cycles for 2.5% RH. 

In other words, for each test that achieved low friction there is an inverse relationship 

between RH level and number of run-in cycles. As well, the steady-state friction 

coefficients slowly increase at higher sliding cycles. Note that an anomalously low 

friction coefficient is seen in the first 1-3 cycles for the high friction tracks. This transient 

effect is believed to be due to either the initial presence of contamination or sticking of 

the slider during the first few small-amplitude cycles. 

 

Fig. 3.2: (a) UNCD constant-load study friction plot. (b) Log-log plot of the data in 
(a) to highlight run-in and friction. 
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Fig. 3.2 is a plot of the friction data from the constant-load UNCD tests, and Fig. 

3.2b is a zoom of the first 200 cycles. All UNCD friction coefficients eventually run in to 

approximately the same low friction value of ~0.02. Similar to the ta-C results shown in 

Fig. 3.1a, there exists a clear relationship between RH level and number of run-in cycles 

for UNCD. In contrast to ta-C, the UNCD friction coefficients do not show an increase as 

the number of sliding cycles increases. 

The results from the constant load studies for ta-C and UNCD (Fig. 3.1 and Fig. 

3.2) show that there is a trend of decreasing number of run-in cycles with increasing RH. 

With successively lower amounts of passivating species in the environment (lower RH), 

more sliding cycles are needed for the interface to reach a steady state low friction value, 

with the exception of the 0.5 N, 1.0% RH ta-C track which never runs in to low friction. 

Previous polycrystalline diamond run-in studies mentioned above involved modification 

of the surface structure and chemistry by polishing prior to testing [3.17] or changing the 

film growth conditions [3.11]. These results show that ta-C and UNCD run-in behavior 

for self-mated interfaces can be controlled by just varying humidity in the environment 

during sliding. This demonstrates there is a strong tribochemical component to the run-in 

of these hard-carbon interfaces. These results either support the hypothesis that the 

passivation of dangling carbon bonds during sliding by water vapor is required to achieve 

low friction and wear, or they suggest that the formation of a graphitic layer is inhibited 

by the absence of water vapor. 
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3.3.2 Load/RH Studies 

 

Fig. 3.3: (a) ta-C load/RH study friction plot, (b) Log-log plot of the data in (a) to 
highlight run-in and friction. 

 

The ta-C friction data from the load/RH study are shown in Fig. 3.3a and Fig. 

3.3b. As already seen in Fig. 3.1a, the track created at 0.5 N, 1.0% RH never achieves 

low friction. However, the track created at 0.05 N, 1.0% RH does run in to a minimum 

friction value of 0.069 (like the other ta-C tracks, this slowly increases with more cycles). 

Also, as already seen in Fig. 3.1a, there is a transition in behavior as a function of RH 

between the two 0.5 N load tracks, such that the track created at 50.0% RH runs in 

quickly and maintains low friction while the track at 1.0% RH never runs in. The ta-C 

load/RH study also reveals quantitative differences in the final friction values for the 

three tracks that ran in. The friction coefficient after run in for the 0.5 N load test was 

0.046 (Fig. 3.3a). This is less than one-third the value of the final friction coefficients for 
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the 0.05 N tracks, made at 1.0% and 50.0% RH, which were 0.163 and 0.139, 

respectively. 

 

Fig. 3.4: (a) UNCD load/RH study friction plot, (b) Log-log plot of the data in (a) to 
highlight run-in and friction. 

 

Fig. 3.4a and Fig. 3.4b show the equivalent load/RH study data for UNCD. For 

these UNCD tests, the tribometry results show that all four tracks created (at high and 

low load, high and low humidity) ran in to a low friction value. It followed the same 

overall trend seen for ta-C: the track created at lower humidity and higher load exhibited 

higher friction and higher wear initially, but the 1.0 N, 1.0% RH UNCD track eventually 

does run in. Also similar to ta-C, the tracks made at higher load ran in to slightly lower 

friction values (0.015 and 0.021) compared to the tracks made at the lower load (0.028 

and 0.029). 
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3.3.3 Load/RH Study PEEM Results 
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Fig. 3.5: (a) ta-C PEEM image taken with 289.0 eV photons on heavily worn (0.5 N, 
1.0% RH) wear track, (b) Carbon K-edge spectra from heavily worn, lightly worn, 
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and unworn parts of the ta-C sample (heavily worn ROI shown in image), (c) 
Corresponding oxygen K-edge data (same ROIs as in (b)). 

 

Analysis of the ex-situ PEEM data allows us to explore the tribochemical 

reactions that occurred under the different testing conditions. Fig. 3.5a is a PEEM image 

taken at 289.0 eV from the 0.5 N, 1.0% RH ta-C track. The image shown has a large 

region of interest (ROI) indicated within the wear track borders. The bottom spectrum 

shown in Fig. 3.5b is a reference taken on an unworn portion of the ta-C sample, and the 

top spectrum is from the worn region in Fig. 3.5a. There are two main spectroscopic 

differences between the heavily-worn and unworn spectra. The first is the increase in the 

C 1s π* peak at 285.0 eV for the 1.0% RH track. The second is the significant amount 

of oxidation in the 1.0% RH wear track, as evidenced by the peaks in the heavily worn C 

K-edge spectrum at 286.7 eV and 288.6 eV, which are assigned to a C-O Rydberg orbital 

and C-O σ* antibonding orbital, respectively [3.18]. A Rydberg orbital is a weakly-

bound, unoccupied state of an atom or molecule very near the Fermi level. As such, it is 

also near the ionization potential of core level electrons, and so is located near the edge 

jump for NEXAFS spectra. The lightly-worn spectrum from the 0.5 N, 50.0% RH track 

shows some increase in the C 1s π* peak at 285.0 eV, giving evidence of a small 

amount of rehybridization, and some traces of oxidation. 

The oxygen K-edge spectra (Fig. 3.5c) also reveals differences between the three 

regions. The spectrum from the unworn area (bottom spectrum) and the spectrum from 

the 0.5 N, 50.0% RH track (middle spectrum) are similar in both shape and intensity. 
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There is a small peak around 532.7 eV corresponding to a O 1s π* transition for double-

bonded oxygen [3.19], and then a low, broad hump starting at 538.0 eV which is due to 

the σ components of single- and double-bonded oxygen. The unworn spectrum has a low 

overall intensity, which is expected as the surface only has a small amount of oxygen 

from contamination. The relative intensities of these two curves suggest that there is little 

oxygen in the 0.5 N, 50.0% RH track. In the case of the 1.0% RH track, there is 

substantially more oxygen overall as noted by the much higher intensity of the entire 

spectrum. The oxygen is more σ- than π -bonded, as demonstrated by the much larger 

edge jump at 538.0 eV and the noticeable C–O feature at ~541 eV. However, for the 

1.0% track there is a shift in the pre-edge peak to 533.4 eV, which corresponds to the 

presence of an O-H bond [3.18]. 
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Fig. 3.6: (a) UNCD PEEM image taken with 289.0 eV photons on heavily worn (1.0 
N, 1.0% RH) wear track, (b) Carbon K-edge spectra from heavily worn, lightly 
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worn, and unworn parts of the sample (heavily worn corresponds to ROI in image), 
(c) Corresponding oxygen K-edge spectra (same ROIs as in (b)). 

 

The PEEM results from the UNCD constant-load study are similar to those from 

the ta-C constant-load study. Fig. 3.6a is a PEEM image taken at 289.0 eV from the 

UNCD track created at 1.0 N, 1.0% RH. This image is entirely inside the borders of the 

wear track. The bottom spectrum in Fig. 3.6b is from an unworn portion of the same 

UNCD sample. The top spectrum in Fig. 3.6b is from the ROI in Fig. 3.6a. The spectrum 

from the 1.0 N, 1.0% RH track shows evidence of both sp3 sp2 rehybridization of the 

carbon bonds (increase in peak height at 285.0 eV) as well as oxidation (features at 

~286.4 and ~288.6 eV). The oxygen data in Fig. 3.6c show that the different UNCD 

spectra are very similar to the O 1s ta-C spectra. There is a weak oxygen signal from the 

unworn portion of the sample (bottom spectrum) and the 1.0 N, 50% RH track (middle 

spectrum). The small, broad pre-edge feature is centered at 533.2 eV, and is attributed to 

an overlap of peaks from the π-bonded oxygen as well as hydroxyl groups. The broad 

feature starting at 538.0 eV is from the σ-bonded oxygen. These spectra are contrasted 

with a significant increase in oxygen from the 1.0 N, 1.0% track (top spectrum). Here the 

pre-edge peak has shifted and is centered at 533.5 eV, which, like ta-C, indicates more O-

H bonding. The edge jump is apparent at 538.0 eV, with a C-O feature at 541.0 eV. 

These results disprove the hypothesis of graphitization. If graphitization occurs, 

where sp3-bonded carbon is rehybridized into ordered, sp2-bonded sheets, there would be 

a noticeable shift in the C 1s π* transition from 285.0 eV to 285.5 eV [3.15, 20, 21]. 
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However, there is no spectroscopic evidence for this shift, even in the heavily worn 

spectra in Fig. 3.5b and Fig. 3.6b. These spectra had the highest friction, which also 

means the highest amount of energy dissipated in the contact, as well as the highest 

amount of wear. But even these wear tracks do not show the presence of graphitic carbon. 

None of the spectra from any of the wear tracks display a shift in the C 1s π* peak 

energy, indicating there is no ordered graphite present. Spectra from graphite are similar 

to spectra taken on graphene surfaces [3.22], suggesting graphene is not formed either. 

To further rule out the formation of graphite, we used the transmission properties 

of x-rays through graphite and diamond and the electron emission properties of carbon 

[3.23] to simulate a NEXAFS spectrum for one monolayer of graphite on top of UNCD 

(Fig. 3.7, solid gray line). The atomic densities of graphite and UNCD were used to 

determine the penetration depth of x-rays into a hypothetical sample of one monolayer of 

graphite on top of bulk UNCD. The known spacing between graphite planes was used as 

the monolayer thickness. Then, for each absorbed photon there was one Auger electron 

produced. By calculating the emission profile of these Auger electrons (assuming they all 

have ~280 eV energy, and so a 0.75 nm mean free path), the percentage electron yield as 

a function of depth was calculated. For this hypothetical structure, ~27% of the electrons 

emitted at the C K-edge come from the graphite monolayer. Thus, the simulated spectrum 

is the linear combination of 27% graphite and 73% UNCD. The sp2 percentage of this 

graphite layer is a lower bound for three reasons. First, the monolayer thickness was a 

lower bound, using the spacing between two sheets in HOPG. A thicker layer would have 
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more photon absorption and therefore more electron emission, meaning a higher 

percentage coming from the layer. Second, we assumed the longest electron mean 

inelastic path (0.75 nm), meaning electrons from deeper in the bulk can contribute a 

higher fraction of the total signal. Last, any interlayer bonding, which would likely have 

sp2 character, was ignored. All of these factors would only enhance the emission from the 

graphitic layer, yielding a more noticeable graphite character to the resultant spectrum. A 

simulated spectrum with the same sp2 content as the most heavily modified region of the 

1.0 N, 1.0% UNCD track corresponds to a coverage of only 42 ± 2% of a monolayer of 

graphite. Further evidence for the lack of graphitization is shown in Fig. 3.7 (bottom). 

The dashed gray spectrum is the subtraction of an unworn UNCD spectrum from the 1.0 

N, 1.0% track spectrum. The result is similar to the spectrum from hydrogenated 

amorphous carbon [3.24] (Fig. 3.7, dashed black line), suggesting that some amount of 

amorphous carbon was created by wear.  

We performed a similar calculation to that done for graphite, but instead using the 

hydrogenated amorphous carbon spectrum in Fig. 3.7 for the topmost layer. This analysis 

revealed that an amorphous carbon layer only 0.25 ± 0.01 nm thick yields the same sp2 

content found in the heavily modified region of the 1.0 N, 1.0% UNCD track. The UNCD 

and ta-C for the low friction and low wear tracks remains almost completely unaltered at 

the surface, with no graphitization or significant amorphization. We conclude that the 

much discussed lubrication mechanism for diamond or heavily tetrahedrally-bonded 
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carbon involving the formation of substantial graphitic or amorphous interfacial layers 

does not occur for UNCD or ta-C under a broad range of conditions [3.15]. 

 

Fig. 3.7: A comparison of NEXAFS spectra. Top - experimental data from the most 
heavily worn region of the 1.0 N, 1.0% RH UNCD wear track (solid black line) and 

a simulation for one monolayer of graphite on UNCD (solid gray line). Bottom - 
spectrum from hydrogenated amorphous carbon (dashed black line) and 

subtraction of an unworn UNCD spectrum from the 1.0 N, 1.0% RH UNCD track 
spectrum (dashed gray line). 

 

If passivation is the lubrication mechanism, the tribological performance should 

be affected by parameters that would inhibit adsorption of species on the dangling bonds 

formed at the contact, such as normal contact stress, sliding velocity, temperature, and 

both type and quantity of ambient species. The experiments here show that low friction 

and wear for ta-C and UNCD only occurs with sufficiently low contact pressure or with 
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enough RH in the environment. We can explain the run-in and subsequent friction 

behavior as follows. As sliding begins, if there is enough water vapor in the environment, 

any broken bonds that are formed during sliding are rapidly passivated, and there are few 

bonds broken per sliding pass. Therefore, only a small amount of wear occurs as the 

asperities on the relatively smooth surfaces are further smoothened, and friction runs in 

with few cycles. However, at higher contact pressures, more broken bonds are formed per 

unit time and they cannot be passivated fast enough during sliding, causing friction to 

remain high. Similarly, even for the same contact pressure, if the RH is reduced, the 

broken bonds that are formed cannot be passivated fast enough due to the lack of 

available species in the vapor. Again, friction and wear will remain high. This will be true 

until enough wear occurs that the contact pressure becomes low enough such that the 

bonds broken per cycle is less than or equal to the bonds passivated. In all cases there is 

oxidation (small amounts for tracks with low wear, and significant oxidation for cases of 

high wear). This agrees with previous experiments performed as a function of partial 

pressure of water in vacuum which supported the passivation hypothesis [3.8, 9]. 

The spectromicroscopy shows ta-C and UNCD tracks that experience high 

friction and high wear undergo chemical changes detectable in both the carbon and 

oxygen spectra. As sliding occurs with strong interaction of dangling bonds across the 

interface causing high friction, the surface of both films rehybridize (undergoing sp3 sp2 

conversion) modestly. This is seen in the NEXAFS spectra as an increase in the C 1s π* 

feature at 285.0 eV (Fig. 3.5b and Fig. 3.6b). Oxygen NEXAFS data from the PEEM 
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measurements (Fig. 3.5c and Fig. 3.6c) suggest that there is a single oxidation mechanism 

that occurs during wear, with primarily hydroxyl groups on the surface forming C–OH 

bonds. For the case of the 0.5 N, 1.0% RH ta-C track that never ran in, this could either 

indicate that the surface was unable to be sufficiently passivated and therefore exhibited 

high friction, or the surface remained reactive throughout the test and the oxidation 

observed with PEEM occurred after testing was complete. In contrast, the 1.0 N, 1.0% 

RH UNCD track did run in after 2660 cycles and exhibited this predominantly C-OH 

bonded surface. This suggests that the surface was driven toward a state with increased 

C-OH bonding during sliding which minimized the interaction between the pin and flat. 

The formation of C-OH bonds is consistent with experiments [3.25, 26] and ab 

initio density functional theory (DFT) calculations [3.27, 28]. Qi et al. showed that 

hydrogen and water will preferentially dissociate (hydrogen into two H, Fig. 3.8a, and 

water into an H and OH, Fig. 3.8b) and bond to an unterminated diamond (111) surface 

[3.27]. Hydrogen has no energy barrier to form this reaction, so the dissociation and 

bonding will happen spontaneously. Water has a small energy barrier (0.122 eV) and, 

while less likely to happen than for hydrogen, will also likely occur. Okamoto estimated a 

higher barrier of 1.12 eV using hybrid molecular orbital-DFT calculations [3.28]. It is 

likely that the stresses and thermal gradients that occur during sliding could enhance this 

passivation mechanism. While this calculation was for single crystal diamond, there is a 

similarity to the highly sp3-bonded ta-C and UNCD surfaces. UNCD would be closer to 

single crystal diamond, as the grains consist entirely of diamond bonded carbon. 
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Fig. 3.8: Change in energy and bond length of hydrogen (a) and water (b) molecules 
as a function of normal separation distance from an unterminated diamond (111) 

surface [3.27]. 
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Other recent DFT work was performed by Zilibotti et al. [3.29], studying the 

kinetic barriers and equilibrium energies of a diamond (001) surface passivated with 

various species, including OH groups (Fig. 3.9). For self-mated diamond interfaces 

terminated with the groups, they determined the potential energy surface (PES), which is 

the interaction energy of the interface as a function of lateral position. These PES 

calculations alone cannot predict tribological behavior when there are normal stresses, 

shear stresses, sliding motion, and more complex surface compositions. However, they 

do support the argument that hydroxylated diamond surfaces will reduce interactions 

across an interface, a hydroxylated surface separating by a calculated 0.25 nm, thereby 

reducing friction and wear. It should be noted that the termination that provided the 

lowest PES corrugation (smallest variations of the PES along any direction) was the 

oxygen-terminated surface (Fig. 3.9d), which formed ester groups along the carbon 

dimers (dimers are reorganizations of surface atoms from their bulk crystalline locations 

which reduce energy by forming double bonds in the plane of the surface). This would 

suggest that a diamond surface that could achieve this termination would have the lowest 

friction, and, in an environment with fewer passivating species available, this would be 

crucial since lower friction would mean fewer bonds broken per sliding pass, leading to 

fewer dangling bonds needing passivation. However, the ester terminated surface is a 

theoretical construct made from an environment that is saturated with O2 molecules along 

with water, and the experiments show that for environments similar to the work in this 

thesis, the ester termination is not observable. 
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Fig. 3.9: Top and lateral view of hydroxylated (a), hydrogenated (b), H2O-
terminated (c), and oxygenated (d) diamond surfaces [3.29]. Gray atoms are carbon, 
red are oxygen, and white are hydrogen. Charge separation values, δ, are given for 

end groups, and bond angles are shown. 
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Furthermore, starting with an unpassivated diamond surface and molecular water 

vapor, achieving that C-O-C-terminated surface is a more complex process than the 

formation of the hydroxylated (or hydroxylated and hydrogenated) surface. Breaking one 

of the OH bonds in water and then passivating two carbon atoms with the resultant H and 

OH was calculated to be have an adsorption energy of 1.8 eV/molecule (173 kJ/mol) 

[3.27]. Taking that process further by breaking the OH bond from the hydroxyl group and 

then forming a second CO bond requires two additional steps, and is energetically 

unfavorable to first order when considering bond formation enthalpy (O-H is ~460 

kJ/mol, C-O is ~350 kJ/mol). Within a dynamic tribological interface exhibiting high 

local stresses, the process leading to C-O-C bonding formation cannot be ruled out. 

However, the simpler process of hydroxylation is naturally expected to predominate. It 

was also shown by Skokov et al. [3.30] and Sque et al. [3.31] using DFT that the 

hydroxylated surface was more energetically favored over the solely oxidized surface. 

In the case of high friction and wear conditions for both UNCD and ta-C, the O 

K-edge NEXAFS spectra consistently indicate the presence of hydroxyl groups on the 

surface as discussed in the context of Fig. 3.5c and Fig. 3.6c. Furthermore, the 

polarization of the synchrotron radiation is parallel to the plane of the sample surface. 

The DFT work showed that the C-O component of the hydroxyl bond (Fig. 3.9a) is 

oriented nearly normal to the surface, and the O-H component is oriented more normal to 

the plane of the carbon atoms. This would mean there would be weak coupling between 

the photon polarization direction and the orbital direction for the C-O bond, and stronger 
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coupling with the O-H bond. However, this is an ideal system with a perfectly flat 

surface. The tilt of the O-H bond is due to the electronic attraction of the more positively 

charged hydrogen atoms to the negatively charged oxygen atom on the neighboring 

carbon dimer. There is also a tilt due to the two sets of lone pair electrons in the 

unbounded orbitals. The angle of the O-H bond will be further complicated by defects 

and roughness of the film surface. The carbon and oxygen K-edge NEXAFS data in this 

study all show modest sigma features related to the C-O and O-H bonding expected for 

hydroxyl groups (~286.5 eV and 288.6 eV for carbon, ~533.5 eV for oxygen). This 

would make sense because of the interaction strength of the polarized synchrotron 

radiation with the C-O and O-H bonds of a hydroxyl group bonded to the UNCD or ta-C 

surface. Therefore, we conclude that it is hydroxyl groups which are the main form of 

oxygen bonded to the carbon surface, and responsible for the passivation of dangling 

bonds. 

If there was a significant amount of C=O bonding, with the bond direction still 

oriented normal to the surface, the photon polarization would interact strongly with the π 

orbitals and there should be intense peaks in the spectra, especially in the O K-edge 

spectrum at ~532 eV. The large intensity of the σ features in the O K-edge spectra must 

come from some type of C-O bonding, which is determined to be from hydroxyl groups. 
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Table 3.1: Steady-state friction coefficient, number of run-in cycles, track width, 
average depth, track and sphere wear rates for ta-C and UNCD. 

 

3.3.4 Wear Rates for High Friction Tracks 

We observe that the friction and wear are correlated, consistent with the notion 

that unpassivated bonds lead to stronger interaction across the interface, giving high 

friction and much damage at the interface. The profilometry results (Table 3.1) provide 
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the wear track dimensions from the flats and spheres, and were used to calculate wear 

rates. For all studies on both ta-C and UNCD there are clear relationships between the 

load and RH level during the test and the number of run-in cycles, track width, average 

track depth, track wear rate, and sphere wear rate. Tracks that had high friction over a 

longer number of cycles had deeper and wider wear tracks, and therefore higher wear 

rates. These corresponded to higher sphere wear. For example, for ta-C, the 0.5 N, 50.0% 

RH track took less than 40 cycles to run in, had a final width of only 45 μm, and had a 

single point wear rate of 5.2x10-8 mm3N-1m-1. In contrast, the 0.5 N, 2.5% RH track took 

920 cycles to run in, had a final width of 88 μm, and had a single point wear rate of 

8.3x10-7 mm3N-1m-1. For the case of the low friction and low wear tracks, the measured 

wear volumes are below the uncertainty level calculated in Chapter 2. In these cases the 

reflected intensity data had to be used to locate the wear track, since the scar was not 

visible using the topographic data. 

The tracks with the most severe conditions, the 0.5 N, 1.0% RH ta-C track and the 

1.0 N, 1.0% and 1.0 N, 2.5% UNCD tracks, exhibited severe plastic deformation of the 

substrate. This makes determination of the wear rate of the film itself impossible and so 

in Table 3.1 we report the upper limits based on the worn volume observed in 

interferometry. These films are thin (1-2 μm), and they have a much higher yield strength 

compared to the underlying Si substrates. A TEM cross section for the 1.0 N, 1.0% RH 

UNCD track (Fig. 3.10) revealed that, even though the track was 4 μm deep and the Si 

substrate had undergone an amorphous phase change (Fig. 3.11), there was still a carbon 
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film on top of the amorphous Si inside the track. The NEXAFS spectroscopy confirmed 

the presence of carbon coatings within all wear tracks. 

 

Fig. 3.10: TEM cross-section of a FIB cutout from the 1.0 N, 1.0% RH track 
showing presence of carbon film (dark layer). 
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Fig. 3.11: (a) Zoomed in TEM cross-section of a FIB cutout from the 1.0 N, 1.0% 
RH track showing presence of carbon film with amorphous material below, most 

likely amorphous silicon. (b) Diffraction pattern showing no ordered structure from 

Carbon Film 
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amorphous material region indicated in (a). (c) Diffraction pattern of silicon just 
below the amorphous material region. Images courtesy of Dr. Jerry Bourne and Dr. 

Matt Hamilton. 

 

3.3.5 Contact Pressure and Relative Humidity Level 

Here we discuss the effect that the normal contact pressure of the contact 

combined with the RH level has on the friction and run-in behavior. In these experiments, 

for a given material and a given load, the initial contact pressure is a fixed value. As 

sliding begins, in different RH environments there will be similar sliding performance for 

the first few cycles (highlighted, for ta-C, in Fig. 3.2b). Then each system will evolve 

differently depending on whether or not the bonds that are broken during sliding are able 

to be passivated sufficiently quickly by the passivating vapor species. Tracks created at 

50.0% RH for both ta-C and UNCD run in immediately and never experience many 

cycles of high friction (Fig. 3.1a and Fig. 3.2a). Profilometry on these tracks show there 

is low wear and a smaller track width, meaning a lower apparent contact area and 

therefore a higher average contact pressure. For the 1.0 N UNCD studies the initial mean 

contact pressure (assuming a Hertzian model with a Si3N4 sphere, radius 1.5 mm, 250 

GPa modulus, and 0.24 Poisson ratio contacting a Si flat, 160 GPa modulus, and 0.245 

Poisson ratio) is 649 MPa. The contact diameter is 44.3 µm. The final contact pressures 

were 22.7 MPa, 302.0 MPa, 402.0 MPa, and 581.0 MPa for 1.0% RH, 2.5% RH, 5.0% 

RH, and 50.0% RH, respectively. The ta-C started at 517 MPa mean Hertzian contact 

pressure and a 35.1 µm contact diameter. The final contact pressures were 28.3 MPa, 
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77.9 MPa, 184.0 MPa, and 295.0 MPa for 1.0% RH, 2.5% RH, 5.0% RH, and 50.0% RH, 

respectively. PEEM studies on the 50.0% tracks reveal that the chemical state is almost 

identical to that of the unworn films. Contrasting this behavior are the tracks created at 

1.0% RH. As sliding begins, there are not enough passivating species in the environment 

to terminate the dangling bonds formed for either ta-C or UNCD, and the resulting 

friction coefficients are high (0.6 for ta-C, 0.25 for UNCD). High friction leads to a high 

wear rate, and the track width grows, which lowers the contact pressure. ta-C never 

recovers from this state, and has high, fluctuating friction for the entire 5000 cycles. A 

Fourier transform of this ta-C friction plot is featureless, suggesting the fluctuations 

simply come from the random occurrences of bonds breaking and forming across the 

pin/flat interface. The UNCD track does recover to low friction after 2660 cycles. The 

topography of this track was heavily modified from both wear and from deformation of 

the silicon substrate, both of which contributed to lowering the contact pressure.  

The NEXAFS results show that the chemical state of both tracks made at 1.0% 

RH is similar, suggesting the mechanism and type of passivation is the same. 

Specifically, both tracks are heavily oxidized, which is assumed to come from the 

dissociative adsorption of water molecules. These species are what passivate the broken 

carbon bonds. The trend between final contact pressure and relative humidity gives 

evidence that a passivation mechanism is at play in these systems. In an environment 

with a relatively high partial pressure of water (50.0% RH), the system can accommodate 

a higher contact pressure if the amount of available impinging species is high enough to 
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passivate the broken bonds within the exposure time between sliding passes. However, as 

the partial pressure of water in the system is lowered, low friction can only be maintained 

at lower contact pressure (meaning fewer broken bonds per pass). The transition between 

high and low friction can be understood as the transition in the critical value of number of 

broken bonds formed per sliding pass versus the number of bonds passivated between 

wear events. 

The tribological behavior can also be altered by changing the initial load (and 

therefore the initial contact pressure). This effect is most noticeable at lower humidity. 

Lowering the load from 0.5 N to 0.05 N at 1.0% RH for ta-C (Fig. 3.3) makes the 

difference between not running in at all and running in within the first 150 cycles. This 

shows that change in contact pressure alone has a dramatic effect on the friction at this 

humidity level. This effect was also seen for the UNCD load/RH study, changing the load 

between 1.0 N and 0.1 N at 1.0% RH (Fig. 3.4a and Fig. 3.4b). At 50.0% RH the effect is 

absent, and the friction coefficient actually goes up with the lower load, presumably 

because of the Hertzian contact pressure going down. With excess amounts of passivating 

species in the environment, factors like surface roughness or true contact area are the 

determining factors for the initial friction and run-in behavior. 

3.3.6 Insights Gained From Comparing taC With UNCD 

Overall, the tribological behavior for ta-C and UNCD are remarkably similar, and 

this demonstrates the effeciveness of the passivation mechanism. However, there are 

some noticeable differences. The fact that, at the highest respective load and lowest 
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humidity, the ta-C track did not run in while all the UNCD track did provides insight into 

the differences between the two films. This difference in behavior is particularly notable 

since the constant-load ta-C tracks were created using a lower applied load than that for 

the constant-load UNCD tracks (0.5 N for ta-C, 1.0 N for UNCD). For this ta-C track, 

even though the average contact pressure reduced as the track grew wider, the bonds that 

continued to break during sliding were unable to be passivated sufficiently rapidly by the 

ambient species. The final nominal UNCD contact pressure was roughly twice as high as 

that for ta-C in these two cases, yet the UNCD was still able to obtain low friction at 

1.0% RH. This raises the question as to why ta-C does not perform as well as UNCD. 

There are several material properties (some inter-related) that could contribute to 

this difference. One factor is the respective sp2 fractions of each film. Both ta-C and 

UNCD are almost entirely comprised of carbon, with only ~1% hydrogen in either film 

[3.32]. Although ta-C is amorphous and UNCD is polycrystalline, ta-C has ~20% sp2-

bonded carbon, while UNCD has less than 5% sp2 carbon bonding (located at grain 

boundaries). Materials comprised of sp2-bonded carbon can be good solid lubricants (e.g., 

graphite [3.1], diamond-like carbon [3.33, 34]). Double bonds are easier to break in the 

presence of oxygen and water, and they are also more reactive once broken. Therefore a 

material with a higher percentage of sp2 bonds would need a higher amount of 

passivating species in the environment to passivate the dangling bonds before they bond 

across the interface. Another consideration is the difference in surface roughness (~0.1 

nm RMS for ta-C compared to ~10 nm RMS for UNCD). The fact that ta-C is smoother 
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than UNCD means that the true contact area for ta-C self-mated interfaces is closer to the 

apparent (Hertzian) contact area. The somewhat lower Young’s modulus of ta-C will also 

lead to higher true contact area. Since the friction depends on the true contact area, a 

significantly higher contact area will mean higher friction. Therefore, the steady-state 

friction behavior of ta-C for low friction conditions (high humidity, low load) will be 

higher than for UNCD at the same conditions. It also explains why ta-C was unable to 

slide at a 1.0 N load, and required testing at 0.5 N. And it explains why ta-C never ran in 

at 0.5 N, 1.0% RH when UNCD was able to run-in at 1.0 N, 1.0% RH, considering the 

final average contact pressure was similar. 

3.3.7 Comparing Steadystate Friction Levels 

Another observation from the ta-C load/RH study pertains to the quantitative 

differences in the steady-state friction values for the three tracks that ran in (Fig. 3.3). 

The friction coefficient after run in for the 0.5 N, 50.0% RH test was ~0.05. This is less 

than half the value of the steady-state friction for the 0.05 N tracks at both 1.0% and 

50.0% RH. This can be explained by the considering that the friction force is directly 

proportional to the true contact area, and that the contact area is a sublinear function of 

the normal force due to the non-linear contact mechanic nature of asperities [3.35]. 

Although reducing the normal load decreases the contact area, and thereby decreases the 

friction force, in this range the ratio of friction force to normal force (i.e., the friction 

coefficient) increases. The effect, for ta-C, is a factor of two increase in the friction 

coefficient for an order of magnitude decrease of the load [3.36]. 
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3.3.8 Oxidation Related to Total Wear 

The level of oxidation for ta-C and UNCD tracks is also a measure of the total 

number of broken bonds, which is related to the wear. The above results showed that the 

RH level alone can control the rate at which these surfaces run in. The only differences 

between the tribometer tests in the constant load study are the RH level and number of 

run-in cycles. They start out with the same load, substrate coating, and sphere coating. 

They run for the same number of cycles, and all of the UNCD tracks achieve similar 

steady-state friction coefficients (0.008-0.021), while all but the 1.0 N, 1.0% ta-C track 

run in to 0.046-0.078. NEXAFS data reveal that the tracks which run in quickly and have 

low wear (made at higher humidities) are nearly chemically identical to the unmodified 

film surface. Few bonds are broken during sliding, likely during the few cycles of higher 

friction, and only a slight amount of oxidation of the track is observed. Chemically, the 

tracks from the load study that had the shortest run-in period were the most similar to the 

unworn films (middle spectra in Fig. 3.5b,c and Fig. 3.6b,c). 

All UNCD tracks with a 1.0 N load achieved nearly the same steady-state friction 

of 0.02 +/- 0.01 regardless of their individual oxygen state. For example, the 1.0 N, 1.0% 

RH track, which had a large amount of oxygen bonded almost entirely as C-O, had a 

similar friction coefficient (slightly lower, even) than the other tracks which had less 

oxygen overall and exhibited a mixture of C=O and C-O bonding (Fig. 3.6c, bottom two 

spectra). The spectra are nearly identical to the respective ta-C tracks (Fig. 3.5c, bottom 

two spectra). The UNCD and ta-C O 1s spectra at the maximum respective loads for both 
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the 1% RH and 50% RH cases are directly compared in Fig. 3.10. The spectra for the 

50.0% RH UNCD and ta-C tracks have the same line shape, which shows a mixture of π- 

and σ-bonded oxygen. Comparing those spectra to the spectra from the 1.0% RH tracks 

highlights the clear changes that occur in tracks made at low humidity and that 

experienced higher wear. There is a dramatic reduction in the ratio of π- to σ-bonded 

oxygen (i.e., a large increase in relative σ-bonded oxygen, Fig. 3.12b) that accompanies 

the increase in overall oxygen content. These relative and absolute amounts of C–O 

bonding give insight into the UNCD wear history. Mainly, that the amount of oxidation is 

directly correlated to the amount of wear a track experienced. This is similar to what was 

seen for ta-C, although low friction was never achieved. The tribometry for UNCD shows 

the oxidation state does not affect the steady-state friction behavior. This indicates that ta-

C and UNCD are best tribologically either in conditions where no surface bonds are 

broken during sliding (i.e., the surface remains mostly identical to the as-deposited 

surface). This is supported by the fact that the intensity and line shape for the spectra 

from the 50.0% RH tracks is nearly identical to the spectra from the respective unworn 

films. The other low friction conditions are where broken bonds are passivated with 

oxygen species, which in this case are hydroxyl or other singly-bonded oxygen groups. 
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Fig. 3.12: (a) Oxygen K-edge spectra for ta-C and UNCD from 50.0% RH 
environments (amplified intensity axis compared to (b)), (b) Oxygen K-edge spectra 

for ta-C and UNCD from 1.0% RH environments. 

 

3.4 Summary 

 This work compares the self-mated tribological behavior of two ultra-hard, highly 

sp3-bonded, nearly H-free, carbon films, ta-C and UNCD, as a function of load and RH. 

The spectroscopic results do not show the presence of any graphitic carbon in the worn 

regions, which proves definitively that graphitization is not the lubrication mechanism for 

these films and the conditions tested. There is evidence of amorphization in some of the 

wear tracks that experienced high friction and high wear. However, the tracks that ran in 

quickly and experienced little wear showed barely any signs of amorphization, indicating 

that amorphization is not necessary for low friction and wear. And the ta-C track that 

never ran in (0.5 N, 1.0% RH) experienced the highest amount of amorphization. This 



122 

 

shows that amorphous carbon alone, or an increased fraction of amorphous carbon, can 

not lubricate these interfaces. 

There is a distinct trend in the type and quantity of oxygen bonding in both the ta-

C and UNCD wear tracks created at different RH levels which demonstrate that 

dissociative adsorption of water from the vapor is required to passivate the dangling 

broken bonds produced by sliding contact. Tracks created at successively lower RH 

levels have increasingly higher amounts of oxygen bonded in the track, and the type of 

oxygen bonding is more σ- than π-bonded, in the form of hydroxyl bonding, compared to 

tracks created in higher RH environments. In order to have low friction and low wear, the 

interface must be sufficiently passivated with these species between sliding passes. 

Both ta-C and UNCD show a trend of increasing number of run-in cycles with 

decreasing RH. This suggests that the run in behavior, or in other words the rate at with 

which the interface will reach steady-state, is determined by the vapor environment 

during sliding. The tracks created at the low RH (1.0%) are also the ones that have higher 

overall friction and higher wear. ta-C, which has a larger amount of sp2-bonded carbon, a 

smoother surface, and a lower modulus compared to UNCD, has higher friction and is 

more sensitive to the environment than UNCD. Previous studies have suggested that 

carbon films with increased sp2 fractions exhibit lower friction and wear by making films 

more lubricious. Our results suggest that this simple condition is not sufficient to 

guarantee low friction and wear, and the dependence of the tribochemistry on the contact 
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pressure and environment must be considered in order to better predict and control the 

tribological performance. 

  



124 

 

3.5 Chapter 3 References 

[3.1] F. P. Bowden, and J. E. Young, Proceedings of the Royal Society of London, 
Series A (Mathematical and Physical Sciences) 208, 444 (1951). 
[3.2] M. Seal, Proceedings of the Royal Society of London, Series A (Mathematical 
and Physical Sciences) 248, 379 (1958). 
[3.3] M. Casey, and J. Wilks, Journal of Physics D: Applied Physics 6, 1772 (1973). 
[3.4] B. Samuels, and J. Wilks, Journal of Materials Science 23, 2846 (1988). 
[3.5] S. E. Grillo, and J. E. Field, Journal of Physics D (Applied Physics) 33, 595 
(2000). 
[3.6] A. Erdemir, G. R. Fenske, A. R. Krauss, D. M. Gruen, T. McCauley, and R. T. 
Csencsits,  (Elsevier, Switzerland, 1999), pp. 565. 
[3.7] M. N. Gardos, and B. L. Soriano, Journal of Materials Research 5, 2599 (1990). 
[3.8] H. I. Kim, J. R. Lince, O. L. Eryilmaz, and A. Erdemir, Tribology Letters 21, 53 
(2006). 
[3.9] M. N. Gardos, and S. A. Gabelich, Tribology Letters 6, 103 (1999). 
[3.10] R. H. Savage, Journal of Applied Physics 19, 1 (1948). 
[3.11] R. R. Chromik, A. L. Winfrey, J. Luning, R. J. Nemanich, and K. J. Wahl, Wear 
265, 477 (2008). 
[3.12] R. O. Brennan, Journal of Chemical Physics 20, 40 (1952). 
[3.13] D. H. Buckley, Surface effects in adhesion, friction, wear, and lubrication 
(Elsevier Scientific Pub. Co. ; Distributors for the U.S. and Canada, Elsevier North-
Holland, Amsterdam; New York; New York, 1981). 
[3.14] M. A. Hamilton, A. R. Konicek, D. S. Grierson, A. V. Sumant, O. Auciello, W. 
G. Sawyer, and R. W. Carpick,  (ASME, Miami, FL, United states, 2009), pp. 9. 
[3.15] A. R. Konicek, D. S. Grierson, P. U. P. A. Gilbert, W. G. Sawyer, A. V. Sumant, 
and R. W. Carpick, Physical Review Letters 100, 235502 (2008). 
[3.16] G. T. Gao, P. T. Mikulski, G. M. Chateauneuf, and J. A. Harrison, Journal of 
Physical Chemistry B 107, 11082 (2003). 
[3.17] I. P. Hayward, I. L. Singer, and L. E. Seitzman, Wear 157, 215 (1992). 
[3.18] I. Ishii, and A. P. Hitchcock, Journal of Electron Spectroscopy and Related 
Phenomena 46, 55 (1988). 
[3.19] S. G. Urquhart, A. P. Hitchcock, R. D. Priester, and E. G. Rightor, 1995), pp. 
1603. 
[3.20] S. Anders, J. Diaz, J. W. Ager, III, R. Y. Lo, and D. B. Bogy, Applied Physics 
Letters 71, 3367 (1997). 
[3.21] D. S. Grierson, A. V. Sumant, A. R. Konicek, T. A. Friedmann, J. P. Sullivan, and 
R. W. Carpick, Journal of Applied Physics 107 (2010). 
[3.22] K.-J. Kim, H. Lee, J. H. Choi, H. K. Lee, T. H. Kang, B. Kim, and S. Kim, 
Journal of Physics Condensed Matter 20 (2008). 
[3.23] E. Gullikson, X-Ray Interactions With Matter, 
http://henke.lbl.gov/optical_constants/,  



125 

 

[3.24] N. J. Mehta, S. Roy, J. A. Johnson, J. Woodford, A. Zinovev, Z. Islam, A. 
Erdemir, S. Sinha, G. Fenske, and B. Prorok,  (Materials Research Society, Warrendale, 
PA 15086, United States, Boston, MA, United States, 2005), pp. 49. 
[3.25] A. Laikhtman, A. Lafosse, Y. Le Coat, R. Azria, and A. Hoffman, Surface 
Science 551, 99 (2004). 
[3.26] X. Gao, L. Liu, D. Qi, S. Chen, A. T. S. Wee, T. Ouyang, K. P. Loh, X. Yu, and 
H. O. Moser, Journal of Physical Chemistry C 112, 2487 (2008). 
[3.27] Y. Qi, E. Konca, and A. T. Alpas, Surface Science 600, 2955 (2006). 
[3.28] Y. Okamoto, Physical Review B (Condensed Matter) 58, 6760 (1998). 
[3.29] G. Zilibotti, M. C. Righi, and M. Ferrario, Physical Review B (Condensed Matter 
and Materials Physics) 79, 075420 (10 pp.) (2009). 
[3.30] S. Skokov, B. Weiner, and M. Frenklach, Physical Review B (Condensed Matter) 
55, 1895 (1997). 
[3.31] S. J. Sque, R. Jones, and P. R. Briddon, Physical Review B (Condensed Matter 
and Materials Physics) 73, 85313 (2006). 
[3.32] A. R. Krauss et al., Diamond and Related Materials 10, 1952 (2001). 
[3.33] O. L. Eryilmaz, and A. Erdemir, Wear 265, 244 (2008). 
[3.34] J. Andersson, R. A. Erck, and A. Erdemir, Surface &amp; Coatings Technology 
163-164, 535 (2003). 
[3.35] J. A. Greenwood, and J. B. P. Williamson, Proceedings of the Royal Society of 
London. Series A, Mathematical and Physical Sciences 295, 300 (1966). 
[3.36] T. W. Scharf, and I. L. Singer, Tribology Transactions 45, 363 (2002). 
 
 



126 
 

4. Frictional Switching Behavior of Ultrananocrystalline 
Diamond  
------------------------------------- 

4.1 Introduction 

 The previous chapter discussed the environmental dependence of UNCD and ta-

C.  During the study of these films, we discovered a surprising and dramatic behavior 

where the change from low to high friction upon reducing the RH could be completely 

reversed when increasing the RH again. Here we describe this remarkable phenomenon. 

Sharp switching behavior is the opposite of that seen for hydrogenated diamond-

like carbon (H-DLC) films transitioning between dry and humid environments. Dickrell 

et al. showed that the friction dependence H-DLC films have on RH can be explained by 

a fractional coverage model [4.1, 2]. They see a slow, continuous increase in friction 

coefficient as the RH is raised. The surface is covered with two different types of species, 

one that is low friction (the native film) and one that is high friction (adsorbed species 

from dissociated water). The RH level determines the rate of adsorbed species, and the 

sliding velocity determines the rate of layer removal. The friction coefficient is 

determined by the relative coverage fraction of the two species. 

4.2 Initial Experiments 

In the first observation of the switching phenomenon, ultrananocrystalline 

diamond (UNCD) films were coated on a 1x1 cm2 Si flat and a 3 mm diameter Si3N4 

sphere (as in Chapter 2). Using linear reciprocation, a 500 mN load, and 1 mm/s sliding 
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velocity, a wear track was created in a N2 environment with relative humidity (RH) 

starting above 4.0%. The friction coefficient as a function of cycles was recorded, and 

RH levels were documented by hand every ~25 cycles. After 350 sliding cycles, the RH 

was lowered by flushing the system with only dry N2 (Fig. 4.1). 

 

Fig. 4.1: Friction data from UNCD track exhibiting first instance of switching 
behavior. 

  

At cycle 865 the friction coefficient was 0.009. As the RH dropped below 1.61%, 

the friction coefficient rose to 0.353 by cycle 890. This is over an order of magnitude 

increase in the friction coefficient for a RH drop of ~0.05%, occurring in just ~25 sliding 

cycles. The friction coefficient was high and erratic, reaching a maximum of ~0.53, and 

the RH eventually bottoms out at ~1.43%. Humidified N2 was then introduced back into 
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the chamber. At cycle 1546 the friction coefficient was at 0.266, and the RH had 

increased to 1.87%. By cycle 1619, the RH had increased to 2.02% and the friction 

coefficient had dropped back down to 0.008. This cycle is reproduced four times in the 

data set, where a period of high friction with low RH is followed by the low friction value 

as the RH is increased again. There is some hysteresis, as the transition from low to high 

friction occurs at ~1.6% RH, and the transition from high to low friction is at ~1.9% RH. 

The surface switches sharply between high and low friction with small changes in RH, 

and is henceforth referred to as UNCD 'switching' behavior. In each switching instance 

the friction becomes high and erratic at low humidity, and then at higher humidity 

recovers to almost exactly the same initial value. The friction during the higher RH 

sections is also quite stable. 

  Further sets of similar experiments using UNCD films (grown in different runs) 

saw the same behavior. Fig. 4.2 shows another self-mated UNCD friction plot. In 

addition to varying the RH, the load is also changed at specific intervals during the test. 

The track started out at 500 mN, again with a combination of dry N2 and humidified N2 

providing RH control, 1 mm/s sliding velocity, and a 500 µm track length. RH was still 

be recorded by hand, and in this case only 20 measurements were recorded over the 

12000 cycles. Fig. 4.1 gives a good indication about the pattern of RH changes. As 

sliding begins (Fig. 4.2) and the RH is lowered, the friction does not sharply increase, but 

instead slowly rises from its minimum value of ~0.0035 up to ~0.02 before spiking at 

~0.0375. The RH is increased again until lower friction is achieved, but the system does 

not recover to the lower value and instead is at ~0.01. It is possible that the system 
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reached some sort of new steady-state behavior around cycle 5000 that is different than at 

cycle 1000. At cycle ~6000 the load was increased from 500 mN to 750 mN. Again the 

RH was lowered, and again the friction slowly trended upward (from ~0.01 to ~0.023) 

before switching to the higher friction state. Interestingly, the high friction state for this 

system is only ~0.04 (and spiky) whereas it was an ~order of magnitude higher (0.2-0.5) 

for the data in Fig. 4.1. This fact, combined with the lack of sharp switching behavior, 

implies there is something different about this second system. Finally, after the system 

recovers (more sharply) after cycle 8000, the load was increased from 750 mN to 1.0 N at 

cycle ~9200. A last, sharper switching transition is observed, showing that the ability to 

switch is not fixed at a certain load. 

 

Fig. 4.2: Second example of UNCD switching behavior, including change in load 
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Results from this second test suggested sharp transition behavior is more likely at 

high loads. With this in mind, a final test was performed using a 1.0 N load, and 

otherwise identical parameters, to determine if the switching behavior further evolved 

with number of switching occurrences. Fig. 4.3 shows a test where the system switches a 

total of 10 times between the low and high friction state. The friction behavior to this 

third preliminary test is more similar to the first test (Fig. 4.1) where the change between 

the low and high friction state covers almost two orders of magnitude, and the switching 

is sharp. The behavior does evolve with number of switches, which could be due to the 

accumulated wear. As more time is spent in the high friction state, the system is not able 

to return to the previously low friction value (cycle 3500). As the RH decreases, the 

friction slowly increases until the debris is cleared from the contact and a transition 

occurs (cycles 3500 to 5500). 
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Fig. 4.3: UNCD switching friction plot showing a total of 10 switches. Friction 
behavior evolves starting at cycle 3500 (arrow) and is not able to return to the low 

friction value until cycle 5500. 

 

 

Fig. 4.4: UNCD friction data as a function of sliding velocity with a 1.0 N load, RH 
between 0.7-0.9%. 

 

Fig. 4.4a is a plot of friction coefficient as a function of cycle for changing sliding 

velocities. The load was kept constant at 1.0 N and the RH was kept between 0.7% and 

0.9%. Here the friction is low (~0.005) even with only 0.9% RH. The difference between 

this test and previous tests (Chapter 3, and Fig. 4.1, Fig. 4.2, and Fig. 4.3) is that the 

sliding velocity is only 60 μm/s, compared to the usual 1000 μm/s. The increase in 

friction with increased sliding velocity further supports the passivation mechanism by 

showing that the reduced exposure time prevents sufficient passivation of the surface, 
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which increases dangling bond interaction across the interface. This also shows the 

transition behavior can be triggered by changing the exposure time instead of the amount 

of water. 

Next we describe an experiment designed to elucidate the mechanism behind the 

switching behavior for UNCD. The same sequence of environmentally controlled 

tribometry followed by PEEM measurements determine friction and chemical changes as 

UNCD interfaces run in, experience a switching transition, and recover. Recent density 

functional theory (DFT) work provides a possible explanation as to the driving 

mechanism. 

4.3 Systematic Switching Experiments: Experimental Methods 

 A Si flat and a Si3N4 sphere were coated as in Chapter 2. All tracks were made 

with the same sphere. The experiment involved creating five wear tracks (Fig. 4.5). By 

creating tracks that were stopped at each point along a switching transition, we can 

examine the chemical changes that have occurred. Track 1 starts sliding and is stopped 

after it has run-in. Then, Track 2 undergoes run-in and then has the RH lowered and is 

stopped just as it transitions to high friction. Track 3 follows the same path as track 2, but 

then experiences some cycles of high friction. Track 4 follows the same path as track 3, 

but then has the RH increased again to recover to low friction, and is stopped. Finally, the 

last track goes through the full switching path and is run for a period of low friction after 

the transition. 
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Fig. 4.5: Experimental schematic for wear tracks to test switching behavior 

  

Because of the slow rate that the RH changes in the system, it was not possible to 

precisely determine the number of cycles each track spent in each phase of the switching 

transition. Ideally it ought to be chosen to be the same, to ensure that each track had 

similar wear and chemical modifications during each section. However, due to time 

limitations and instrumental challenges, that proved to not be possible. The most 

important goal was achieved: to characterize the surfaces before a transition, during the 

high friction phase, and after it has recovered to see what conclusions can be drawn about 

the behavior. 

As in Chapter 3, the wear tracks are characterized post-mortem by scanning white 

light interferometry to measure wear, and by PEEM to measure the chemical bonding 
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changes. These measurements are related to the tribological performance of each track 

and the point along the transition at which it was stopped. 

4.4 Systematic Switching Experiments: Results and Discussion 

 All of these tracks were created at 1.0 N and 1 mm/s sliding speed. The first run-

in track had 2000 total cycles, and the humidity ranged between 3% and 17% (Fig. 4.6). 

The RH was initially set at 5% for this track, but it dipped below 4% around cycle 200 

(Fig. 4.6, A), causing a transition to high friction. The friction decreased back to 0.034 at 

cycle 500 (Fig. 4.6, B), likely due to sphere wear (i.e., lower contact pressure resulting 

from the larger contact area that occurs with a worn sphere). The friction remained 

slightly higher than normal, and spiky, until the RH was increased from 4% to 7% at 

approximately cycle 1200 (Fig. 4.6, C). Then the friction remained low and constant at 

0.018 for the remaining cycles. The friction profile was not ideal for our desired 

experiment since there is the period of higher friction. However, we believe that the only 

critical part of run-in is conditioning the sphere by mechanical polishing and chemical 

conditioning (as in Chapter 3). Any sphere that has run in is nearly identical, 

mechanically and chemically, to other spheres that have run in. 
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Fig. 4.6: Friction coefficient data with RH for switching transition test, track 1 (first 
sphere run-in) 

 

Track 2 was run for just over 1500 total cycles (Fig. 4.7). The run-in occurs in 

less than 100 cycles (Fig. 4.7, A), with the RH around 7%. After ~1100 cycles (Fig. 4.7, 

B), the RH was lowered to cause a transition, which occurred just after cycle 1500 (Fig. 

4.7, C). At this point the test was stopped. 
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Fig. 4.7: Friction coefficient data with RH for switching transition test, track 2 

 

Fig. 4.8 shows the friction data for Track 3. This track runs in for just over 1000 

cycles before the RH is lowered. It then experiences ~800 cycles of high friction. 
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Fig. 4.8: Friction coefficient data with RH for switching transition test, track 3 

 

Friction data for Track 4 are shown in Fig. 4.9. This track runs in at higher 

humidity for almost 1300 cycles (Fig. 4.9, A) before the humidity is lowered enough to 

transition. The system runs at higher friction for over 100 cycles, and then the humidity is 

raised again (Fig. 4.9, B). The friction transitions back to a low state just after cycle 1400 

(Fig. 4.9, C) and the test is stopped. 
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Fig. 4.9: Friction coefficient data with RH for switching transition test, track 4 

 

Finally, Fig. 4.10 shows the friction plot for track 5 which undergoes the full 

transition and then runs for 300 cycles in low friction after the transition. Track 5 only 

ran for 200 cycles in high friction. 
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Fig. 4.10: Friction coefficient data with RH for switching transition test, track 5 

 

As was mentioned, due to experimental limitations, it was not possible to keep the 

number of cycles in each phase of the transition constant for the five tracks. Also, there 

had to be a compromise over the total number of cycles, since too many cycles in the 

high friction state would possibly wear out the sphere. As shown in Table 4.1, there is 

little uniformity between the total cycles, or cycles during any of the phases of the 

switching transition for the five tracks. Most notably, Track 1 included, undesirably, 200 

cycles of high friction. However, we will show that the chemical changes that are 

revealed in PEEM measurements tell a consistent story. As well, the 800 cycles 

experienced in the high friction phase for track 3 is noteworthy, since that should be the 
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track that has the highest amount of chemical and topographic modification (high friction 

is linked to similar changes in Chapter 3). 

 

Table 4.1: Number of sliding cycles during run-in, during the high friction phase 
after a transition, cycles run after transitioning back to low friction, and total 

sliding cycles for the five tracks. 

 

Using PEEM, NEXAFS spectra were acquired from the center of each of the five 

wear tracks, as well as from an unworn portion of the sample. For each track, the center 

was selected as the region of interest since that is the place where the exposure time and 

sliding velocity are constant during each cycle. Since no unique information is conveyed 

in the photoemission images, so they are not shown here. 

Track label Cycles to run-in Cycles in high 
friction 

Cycles after 
transition Total Cycles 

Track 1 1300 200 N/A 2000 

Track 2 1525 6 N/A 1536 

Track 3 1050 800 N/A 1882 

Track 4 1250 125 17 1409 

Track 5 625 175 323 1123 
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Fig. 4.11: Carbon K-edge NEXAFS data from unmodified UNCD and the five wear 

tracks, (a) full spectra separated, and (b) zoomed into the pre-edge. The 
solid/dashed lines are just to distinguish the different spectra. 

 

The carbon K-edge spectra can be grouped into four categories: unworn, slightly 

worn, moderately worn, and heavily worn/recovered (Fig. 4.11). The first category only 

includes the solid black line (top spectrum in Fig. 4.11a and bottom-most spectrum in 

Fig. 4.11b) which is unworn UNCD. It displays all of the usual spectral features of 

unworn UNCD (discussed in Chapter 2). 

Track 2 (solid dark gray line), which experienced only 6 cycles of high friction, is 

the second category, and is the closest in line shape to the unworn spectrum. There is 

some rehybridization evident from the increase in the C 1s π* transition at 285.0 eV. 

This agrees well with the friction data since Track 2 ran in quickly and experienced only 

a few cycles of high friction. 

The third category involves Track 1 and Track 3 (black and dark gray dotted 

lines). The spectra from these tracks show even more rehybridization of sp3- to sp2-

bonded carbon, as well as a noticeable increase in area and peak at 286.7 eV, which is 

from the C-O Rydberg orbital. There is also increased area around 288 eV (corresponding 

to the C-O σ* orbital), but the edge jump after 288.5 eV makes resolving a peak difficult. 

These tracks are the first run-in track, which experienced 200 cycles of high friction, and 

the track that was stopped during high friction after 800 cycles. 

The final group, which are from the last two tracks made, are the spectra that 

differ the most from the unworn spectrum. Track 4 and Track 5 were tracks that were 

stopped just after transitioning back to low friction, and stopped over 300 cycles after the 
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transition, respectively. They show the highest amount of rehybridization (285.0 eV) and 

the greatest intensity of the C-O peak (286.7 eV). They also have the greatest increase in 

area at approximately 288 eV, also indicative of C-O bonding. 

 

Fig. 4.12: Oxygen K-edge spectra from unworn UNCD and the five switching tracks 

 

The oxygen K-edge spectra are shown in Fig. 4.12. These are from the same areas 

as the carbon data in Fig. 4.11. The oxygen trends match well with the carbon data. The 

peaks at ~533.0 eV and 541 eV correspond in relative intensity with the C-O peak in the 

carbon K-edge data. There is nothing significantly different about the shape of the 

spectra, just their relative intensity. None of the oxygen spectra have a high overall 

intensity, suggesting that during none of the tracks has there been an extensive amount of 

wear. This is a reasonable finding since wear of the sphere as each track is made lowers 
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the contact pressure, and no track spends very many cycles in the high friction state 

(compared to 2000-5000 cycles seen by UNCD and ta-C in Chapter 3). 

This switching behavior has the characteristics of an instability, such as in a phase 

transition, suggesting there is a "run away" behavior. This indicates there is a positive 

feedback mechanism. This feedback stems from the fact that, for diamond, the presence 

of adsorbed water reduces the energy barrier for further adsorption. Recent density 

functional theory (DFT) calculations by Manelli et al. have shown that water adsorption 

kinetics change depending on whether or not there is already water adsorbed on the 

surface [4.3]. DFT calculations on diamond (001) surfaces showed that the energy barrier 

for molecular water physisorption was lower when there was already molecular water 

physisorbed to the surface compared to a bare surface. This is because the carbon dimers 

are more strongly polarized and the incoming water molecule can form hydrogen bonds 

to molecular water that has already adsorbed. Because of this they predict that water 

molecules will not uniformly wet a surface, but rather will grow in islands around 

existing adsorbed water molecules. The other important result was that the dissociation of 

the water molecules (an important step in passivation) is also dependent on the existing 

water coverage. They found that the energy barrier for dissociation of water with existing 

physisorbed molecules present was one order of magnitude lower than that for a lone 

water molecule. They also saw dissociation with no energy barrier if there were 

dissociated fragments in the vicinity of the water molecule. This work predicts a cross-

over point between the two bonding regimes, for either low or high dangling bond 

concentrations. 
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For the switching behavior we observe, controlling the RH adjusts the availability 

of water molecules in the environment that can adsorb and dissociate. There are then two 

possible steady-state situations. For RH above a saturation level (~1.8%), the surface 

already has a sufficient level of adsorbed water, and there are enough water molecules in 

the environment to continue to adsorb, dissociate, and passivate any dangling bonds 

formed during sliding. These water molecules have a lower energy barrier to adsorb and 

dissociate because of a surface that already has a high fractional coverage of adsorbed 

species. The system therefore maintains low friction and low wear. There is positive 

feedback as the high surface coverage of adsorbed species promotes further adsorption 

and dissociation. 

However, for RH levels that drop below the necessary saturation level (~1.6%), 

the environment now has an insufficient availability of species to adsorb. For each sliding 

pass the sphere makes, more bonds are being broken than are being passivated. This in 

turn increases the energy barrier for further adsorption and dissociation, creating a 

positive feedback cycle that deprives the surface of the necessary passivated species. 

Dangling bonds on the two counterfaces then strongly interact, causing high friction and 

high wear. 

This also explains why there is hysteresis in the RH level required to return the 

system to the low friction state. When transitioning from the low to high friction state, the 

surface already is sufficiently covered with water and dissociated water groups (hydrogen 

and hydroxyl). In this state the energy barrier to adsorb water is lower, so the RH level 
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needed to ensure water adsorbs and dissociates is lower. The transition to high friction 

occurs when this layer of passivation, or the islands of passivated species, is largely 

removed. In order to reestablish the necessary level of passivation to reduce interactions 

across the interface, the system needs a higher level of available water to recover to low 

friction. Since the adsorption energy barrier in this state is higher, more water is 

necessary in order to increase the probability of adsorption. 

4.5 Summary 

 This Chapter discussed the new, dramatic phenomenon of frictional switching 

behavior of self-mated UNCD. Small decreases in RH below a critical value cause the 

friction coefficient of the interface to sharply increase and remain high. As the RH is 

increased to a higher level than where the first transition occurred, the system quickly 

“heals” to a low friction state. Spatially-resolved NEXAFS spectroscopy shows the 

transition to high friction causes rehybridization of sp3- to sp2-bonded carbon, and an 

increase in C-O and O-H species bonded to the surface. While the surface chemistry of 

Track 2 (which experienced almost no cycles of high friction) and Track 5 (which went 

through a full transition) are very different (far more oxidation for Track 5), the friction 

coefficients during the low friction state are indistinguishable. This demonstrates that it is 

not the amount of dissociated species that is relevant, but just that they are replenished at 

a rate that matches their removal. 

 New DFT work provides an underlying mechanisms to explain this switching 

behavior. The DFT work predicts that the energy barrier for adsorption and dissociation 

are both lowered in the presence of existing adsorbed water molecules [4.3]. The two 
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steady-state situations are then one of high water coverage and few dangling bonds, and 

one of low water coverage and many dangling bonds. These would be the low friction 

and high friction states, respectively. When combined with the bond breaking that occurs 

during sliding, and the fact that the RH is varied (changing the relative amount available 

for adsorption), this tribological system switches between the two states by simply 

lowering or raising the RH below or above the saturation point which is found to be at 

approximately 1.6% RH (below) and 2.1% (above). There is hysteresis observed in this 

level of about 0.5% RH, since it requires more water vapor to reinitiate the minimum 

level of water adsorption needed to then fully passivated the interacting portions of the 

contact. 

 These observations are consistent with the results in Chapter 3, where it was 

shown that not only will the RH level be a key factor, but also the contact pressure. For a 

lower load, and therefore lower pressure, fewer bonds are broken per cycle. This will 

change the critical RH level necessary to switch the system between the two states. Also, 

Chapter 5 will show that by first conditioning the sphere, the tribological performance is 

much improved. Even though these films are very smooth, they still have asperities that 

interact. These asperities will be the points where the larger fractions of bonds are broken 

during sliding, and will be where passivation needs to occur to reduce asperity 

interactions and lower friction. Removing or smoothing these asperities and passivating 

the broken bonds will further reduce the asperity interactions, lower the asperity contact 

pressures, and reduce the necessary RH level required to maintain a sufficiently 

passivated surface 
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 The switching phenomenon is particularly important for applications, as it shows 

that temporary exposure to high friction conditions does not lead to irreversible damage 

of the UNCD. The ability to recover to low friction demonstrates an impressive level of 

robustness for self-mated UNCD interfaces. It also suggests a possible avenue for 

creating novel forms of UNCD-based films that can be exposed to dry or vacuum 

conditions, such as those found in aerospace applications.  

. 
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5. Examining Both Contacts in a Selfmated 
Ultrananocrystalline Diamond Contact 
------------------------------------- 

5.1 Introduction 

 One of the criticisms of only studying the chemical changes on the flat from a 

pin-on-flat tribometer geometry is that it is possible the pin is not changing in the same 

manner as the flat. The pin is in constant contact with the flat during sliding, while 

portions of the flat (depending on track length and contact size) are fully exposed to the 

environment during part of the sliding cycle. This means portions of the track have a 

longer exposure time to interact with the environment, which is further convolved with 

the extra time it takes to decelerate and accelerate at each end of the track. For linear 

reciprocation, the middle point of the track is the only one with a constant exposure time. 

The chemical passivation of the flat might then have a very different final state than that 

of the pin. This would depend on total wear, or total bonds broken during sliding. It also 

depends on the different chemical pathways each surface find to passivate or rehybridize 

broken bonds. 

 This Chapter discusses the details of an experiment which examines both the 

sphere and flat that made tribological contact. As mentioned in Chapter 2, PEEM can not 

image a non-planar surface due to the large bias applied between the sample and 

microscope. Instead of using PEEM, a new imaging microscopy system developed at the 

National Synchrotron Light Source, Brookhaven National Laboratory (described in 
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Chapter 2) is used to characterize both the wear tracks on the flat as well as the wear scar 

on the sphere. The BNL imaging apparatus uses a magnetic field to guide the 

photoemitted electrons toward a CCD camera, with a negative bias in front of the camera 

preventing off-axis electrons from being collected. The resultant set of images is similar 

to that from PEEM, except the signal is PEY instead of TEY. The resolution of this new 

system is ~50 µm, which is much lower than the ~50-100 nm resolution of PEEM. PEEM 

achieves this high resolution by a combination of the large negative bias, which pulls 

electrons perpendicularly from the sample surface, and the electron optics, which can 

filter electrons with the wrong path or energy. The BNL imaging chamber is not able to 

spatially resolve the starting electron locations to this degree. 

 The tribological performance of the sphere and flat, measured by friction 

coefficients and wear, is compared to the mechanical and chemical changes that occur on 

both the flat and the sphere. Profilometry measures the degree of wear and is used to 

calculate a wear rate. The chemical changes are determined by spatially-resolved near-

edge x-ray absorption fine structure (NEXAFS) spectroscopy. Conclusions are drawn 

about the effect the starting state of each counterface surface has on the final state (both 

topographically and chemically) and this is leads to inferences about the important 

characteristics for a low friction, low wear interface. 

5.2 Experimental Details 

 To produce the wear tracks, silicon flats (1x1 cm) and Si3N4 spheres (3 mm 

diameter) were coated with ultrananocrystalline diamond (UNCD) by microwave plasma 

chemical vapor deposition in a DiamoTek 1800 series 915 MHz, 10 kW MPCVD system 
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installed at Argonne National Laboratory [5.1]. The growth temperature was 650 °C, 

which is lower than the growth temperature for typical UNCD [5.2]. Films were grown 

on the flats and the spheres at the same time to a thickness of ~1 μm. The Si3N4 spheres 

had a flat spot polished on them that was positioned away from the growth source. They 

are mounted using this polished spot for all subsequent tests so that identifying the same 

spot is consistent. 

 Tribometry tests were created in a linear reciprocation mode. The goal was to 

determine the surface chemical state of the sphere and flat, and the steady-state friction 

value, after running in the sphere, and then after using the same sphere to create a second 

track. Carbon films undergo a period of higher friction and higher wear as sliding begins, 

called run-in, where surface asperities are worn away. The higher the initial roughness, 

the longer the period of run-in [5.3]. To run in the sphere, first test consisted of sliding for 

5000 cycles. Then the sphere was positioned over a new part of the sample, and a second 

wear track was run for 3000 cycles. In both cases the tests were stopped when it was 

obvious a steady-state friction coefficient (constant friction over time, indicating the 

system has reached equilibrium) was obtained. Both tracks were created in a 5.0% 

relative humidity (RH) with N2 environment, with a 1.0 N load, a 1 mm/s sliding speed, 

and a 500 μm track length. 

 To characterize the UNCD wear, scanning white light profilometry measurements 

were performed on the tracks using a Zygo NewView 6300 interferometer. A height 

profile was taken on each track with lateral resolution of ~0.5 μm and vertical resolution 

at 0.1 nm. 
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The imaging NEXAFS measurements were performed using the parallel 

processing imaging system at the NIST beamline U7A located at the National 

Synchrotron Light Source. The Si flat and Si3N4 sphere used in the tribometer tests were 

mounted to the metal sample arm with copper tape and carbon tape, respectively. A thin 

piece of carbon tape was used to prevent charging effects by groundin the coating on top 

of the Si flat to the metal sample arm. Because of the sphere geometry, the grounding 

with carbon tape was not possible. However, the spectra do not show any charging 

effects. Absorption spectra for the carbon K-edge were taken using a photon energy range 

of 270-340 eV, and 515-570 eV for the oxygen K-edge, with energy resolutions of 0.1 eV 

and 0.2 eV, respectively. 

 

5.3 Results and Discussion 

 The friction data for the two wear tracks are shown in Fig. 5.1. The run-in track 

friction starts off at 0.244 +/- 0.005 for ~1200 cycles, and then the sphere and track run in 

after 3000 cycles to a friction coefficient of 0.0371 +/- 0.0008. When the test was stopped 

after 5000 cycles, the friction had reached a steady-state value of 0.0337 +/- 0.0003. The 

friction data for the second wear track show a run-in to 0.04 in less than 40 cycles and 

eventually hits a minimum of 0.022 at 200 cycles. The friction slowly increases for the 

remaining cycles of the test and is at 0.028 at cycle 3000. 
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Fig. 5.1: Friction data from run-in track (black line) and for the second track (gray line) made in a 
new location on the sample. 

  

These friction curves show there is a noticeable effect of conditioning the sphere. 

The run-in track experiences a longer period of high friction and has a high wear rate, 

compared to the second track. Smoothing of asperities and chemically conditioning the 

surface to a stable state are likely most important factors. Both the Si flat and the Si3N4 

sphere are ~equally smooth substrates, which should mean the surface roughness of the 

film is likely dominated by the growth itself, and doesn’t have a large contribution from 

the substrate. During the first run-in track, these asperities are being worn away on both 

surfaces, but what is interesting is that in the second track it seems the effects of any 

surface roughness of the substrate are negligible. By loading the sphere to the same load, 

the same spot should be in contact that was worn during the first track. The second track 
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runs in within 200 cyles, and to a lower friction value than that achieved after 5000 

cycles in the run-in track. The friction does trend upward as the second track approaches 

3000 cycles, which suggests the contact area of this second track is evolving and that the 

true contact area is increasing. The profilometry results show that the two tracks have a 

different height profile. In both cases the wear of the track is low. The run-in track had a 

maximum depth of ~43 nm inside the gouge, and a single-point wear rate of 3.2 x 10-8 

mm3N-1m-1. The second track profile was not distinguishable from the surface roughness 

of the film. 

 To examine the chemical conditioning that occurred for these tracks, electron 

emission images for the sphere and flat include the areas modified by wear as well as 

areas of unworn material. Fig. 5.2a is an image of the UNCD coated sphere used to make 

the two tracks highlighted in Fig. 5.3a. Carbon NEXAFS data (Fig. 5.2b) were taken 

from the scar on the sphere as well as the unworn film. The scar region of interest (ROI) 

is drawn in Fig. 5.2a. Both spectra have a peak at 285.2 eV that is from a combination of 

the presence of disordered [5.4] and ordered [5.5, 6] carbon-carbon double bonds. There 

is an edge jump with an excitonic feature at ~289.3 eV and a dip in intensity at ~302 eV 

(as discussed in Chapter 2). These features are common to materials with a high fraction 

of ordered sp3-bonded carbon, i.e., diamond [5.7]. There is also a feature at ~286.7 eV 

from C=O bonds [5.8, 9]. The double peak around 292.0 eV is more intense than typical 

UNCD spectra, and looks like the σ* post-edge features from a highly oriented pyrolitic 

graphite (HOPG) spectrum [5.6]. The only noticeable differences between the two 

spectra are the peak heights at ~285.2 eV and ~286.6 eV. The unworn film has more sp2-
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bonded carbon as well as more C=O bonds than the wear scar. The oxygen spectra (Fig. 

5.2c) show differences in the level of oxidation. The unworn spectrum has higher peaks 

at both ~532.6 eV and ~535.4 eV, which are π* features of O=C bonding [5.10]. 
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Fig. 5.2: (a) PEY electron emission image of UNCD coated Si3N4 sphere; (b) carbon NEXAFS spectra 
from unworn area (black) and wear scar (gray); (c) oxygen NEXAFS spectra from the same regions. 

 

Fig. 5.3a is a full-field electron image at 289.0 eV of the UNCD flat. The bright 

stripes are regions that were coated with 40 nm of platinum for a separate study. The dark 

upper and upper right regions result from the edges of the CCD camera. Four tracks are 

visible in the image. The carbon NEXAFS data from the two tracks in this study (ROIs 

labeled in Fig. 5.3a) and an unworn region (not drawn) are in Fig. 5.3b. These spectra 

have a peak at 285.0 eV that is due to disordered carbon-carbon double bonds [5.4]. The 

peak at 286.6 eV is from C=O bonding. There is a slight feature in the run-in track and 

second track at 287.5 eV from C-H bonds. Both the run-in track and the second track 

have higher C=C concentrations than the unworn area, with the run-in track having the 



158 
 
most. The run-in track also has the highest amount of C=O bonding, whereas the second 

track actually has less than the unworn area. Fig. 5.3c has O K-edge NEXAFS spectra 

from the same regions from which the C K-edge spectra in Fig. 5.3b were taken. All 

spectra have the same intensity peak at ~533.0 eV from the O=C bonds. There is also a 

feature at ~535.5 eV that is the higher in the unworn spectrum than the run-in track and 

second track. 

 



159 
 

 



160 
 

 

Fig. 5.3: (a) NEXAFS image of UNCD coated silicon flat; (b) carbon NEXAFS spectra from unworn 
area (black), run-in track (dark gray), and second track (light gray); (c) oxygen NEXAFS spectra 
from same regions. 

 

The most noticeable observation from the spatially-resolved NEXAFS of the 

sphere is that the chemical character of the as-grown film differs from that of the as-

grown film from the flat. There is the noticeable presence of graphitic carbon on the 

sphere, shown by the higher energy shift of the C=C π* peak, and the features around 

292.0 eV. Fig. 5.4 shows a hypothetical spectrum that combines 75% of a UNCD 

NEXAFS spectrum with 25% of an HOPG spectrum. The NEXAFS data from the sphere 

look similar to this hypothetical spectrum, further supporting that there is a component of 

graphitic carbon present. The differences obviously come from the large oxygen signal 
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present on the sphere, as well as a slope difference around the second band gap (302 eV). 

Note that the two spectra that form the calculated spectrum are from TEY measurements 

of clean UNCD and HOPG surfaces (almost no oxygen present), and that the PEY 

surface sensitivity increases the amount of amorphous carbon seen. This is the 

contribution that changes the slope in the post-edge (black spectrum, Fig. 5.4). 

 

Fig. 5.4: NEXAFS comparison spectra between unworn sphere and calculated spectrum from 75% 
UNCD and 25% HOPG. 

 

It is possible that the spectral differences from the as-grown flat and sphere are 

simply from different coating properties due to the different substrate geometries. The 

samples are all coated in the same run, but the shape of the two substrates means there are 
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different thermal gradients. Beyond geometry, the average growth temperature was likely 

different. The thermal conductivity of SiN (0.3 Wcm-1K-1) is more than four times less 

than Si (1.3 W Wcm-1K-1). This would explain why the coatings of the two surfaces are 

likely not identical. 

NEXAFS data from the flat (Fig. 5.3b and Fig. 5.3c) show that the run-in track 

had more amorphous carbon, C=O bonds, and C-H bonds than the unworn film. There is 

no shift in the C=C peak that would indicate ordered bonding, or graphitization. It is 

unclear whether the increase in sp2-bonded carbon is solely from wear of the flat, or 

whether there is a contribution from debris left on the flat from sphere wear. This shows 

that the period of high friction broke carbon bonds and those bonds amorphously 

rehybridized or bonded to species in the environment, most likely water. The increase in 

amorphous carbon is also evident by the reduction in the second bandgap at 302.0 eV 

which is caused by the increase of carbon-carbon species with a wider range of bonding 

lengths. After 2000 cycles, asperities on the sphere are mechanically removed [5.3] and 

the smooth area inside the contact patch, along with chemical passivation, leads to low 

friction. 

In contrast, the second track ran in immediately and has a lower wear rate. While 

the state of the sphere at the start of this second track is unknown, the final state (Fig. 

5.2b) has less C=C and C=O bonded carbon compared to the unworn film, suggesting a 

surface layer was removed during sliding. If the surface of the unmodified sphere was 

representative of the bulk, the changes to the chemistry would only be reflected in 

increases in the amount of oxygen bonding and C=C bonds. However, the post-wear 
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spectrum has the same line shape as that of the unworn spectrum, except lower features in 

the pre-edge. It is possible that there is a surface layer that is more oxidized and is 

removed during mechanical wear. The O K-edge NEXAFS data (Fig. 5.2c) also suggest a 

surface layer with more oxygen has been removed, as the features at ~532.6 eV and 

~535.4 eV are both lower. 

Fig. 5.3b shows the C K-edge data for the second track. The result of conditioning 

the sphere first is a more evident removal of the substrate surface layer. The decrease in 

the C=O peak at ~286.6 eV shows that an oxidized surface layer is removed, likely 

during the very first few passes of high friction. There is some rehybridization of the sp3-

bonded carbon, but the lack of strong C=O or C-H features suggest few bonds were 

broken. This is a direct result of smoothing the contact area of the sphere, and then 

passivating any dangling bonds on the sphere with dissociated water during the first 

track. The average contact pressure is lower at the beginning of the second track. This, 

along with the fact that the sphere has already been polished of its highest asperities, 

means the system has to undergo less wear before steady-state behavior is achieved. 

Polishing the sphere first highlights how crucial that counterface is to the performance of 

the pair. It strongly suggests that, if possible, the counterface to a flat in a tribological 

pairing should always be slightly worn first (at the same point that will make later 

contact). This will dramatically reduce the friction and wear during sliding.  

This also has relevance to the results in Chapter 3 that showed the environment in 

which these tests are run can control the initial run-in behavior. It is possible that by 

combining these two results, an optimal conditioning process could be designed to nearly 
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eliminate wear from run-in. The first step would be to run-in the sphere until the system 

reached steady-state, but at a high humidity, so that the wear would be minimal while 

only the highest asperities are worn. Then the sphere could be run against any other 

portion of the sample and the friction and wear should be minimal. 

5.4 Summary 

 A UNCD-coated sphere made two reciprocating wear tracks on a UNCD-coated 

flat. The first track took over 2000 cycles to run-in, while the second track, after being 

polished during the first track, ran in within 200 cycles. The period of higher friction led 

to measurable wear of the run-in track, while, correspondingly, the immediate run-in and 

low friction during the second track did not leave a detectable track on the surface. 

 Spatially resolved NEXAFS data were taken using a newly developed imaging 

apparatus at the National Synchrotron Light Source, Brookhaven National Laboratory. 

Data showed that both coatings had evidence of a surface layer that had different 

chemical properties than the bulk film. Due to the added surface sensitivity of the PEY 

measurements, it isn't conclusive as to whether it represents an aberrant growth. 

However, spectra from the sphere show that the as-grown and worn area have largely the 

same character, which resembles UNCD with a significant fraction of graphitic carbon. 

The worn portion of the sphere had slightly less sp2-bonded carbon as well as fewer C=O 

bonds, after wear removed some of the surface layer. Relative sp2-bonded carbon fraction 

increased in the run-in track, as higher amounts of wear either caused rehybridization or 

left sp2-bonded debris inside the worn region. However, the second wear track that 

experienced low friction and low wear had a NEXAFS spectrum with a much reduced 
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C=O bonding intensity, along with a slight increase in the C 1s π* intensity. This 

showed that only minimal bonds were broken while making this track, and those likely 

removed the oxygen from the surface, causing the dangling carbon bonds to rehybridize 

in the process. 

 An important lesson learned from this study is that the chemistry of the sphere 

need not always be identical to the flat. Diamond growth is very sensitive to temperature. 

There are thermal gradients in the growth area that can be controlled and tuned to 

improve the uniformity of coatings over wafers. But these systems are not optimized for 

3D geometries (e.g. spheres). There is no spectroscopy technique like NEXAFS that can 

give such an accurate, qualitative measure of the bonding quality of a diamond film. 

However, due to the fact that a synchrotron is needed to perform these measurements, 

this is not always feasible. Regardless, this needs to be considered when performing tests 

with self-mated, polycrystalline diamond interfaces. 
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6. Conclusions 
------------------------------------- 

6.1 Broader Experimental Impact 

The work in this thesis depends on a carefully developed series of experimental 

steps necessary to measure and correlate tribological phenomena with surface chemical 

changes for these hydrogen free, hard carbon films. One important benefit is that this 

protocol is applicable to a much wider range of materials. Recent investigations of 

surfaces exposed to tribological contact in a silicon-based MEMS device [6.1], and 

studies of silicon nitride in contact with UNCD [6.2] are examples of such applications. 

The important components center around the tribometer experiments and 

subsequent PEEM measurements. Tribometry with the level of environmental control and 

measurement precision attained here is not simple. For the work in this thesis, positional 

friction measurements are made with micron-scale precision, and the relative humidity is 

controlled and measured to within 0.1%. This improves the reliability and reproducibility 

of the experiments. Working with advanced tribometers and controlled experimental 

conditions ensures that tests can be performed and phenomena observed, but that the 

samples will be usable for later measurements. Analyzing chemical changes with PEEM 

has been the other key component to this work. No other technique can achieve the same 

combination of spatial resolution, atomic composition sensitivity, and chemical bonding 

sensitivity, while being non-destructive, relatively high throughput, and working on a 

microscopic level that matches the scale of the tribometry. This has been especially 
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fruitful for carbon, since other techniques are not as surface sensitive, or sensitive to the 

subtle bonding changes, that happen at the interface during tribochemical modification. 

There have been other studies that have studied tribological problems using PEEM [6.1-

9], with most of them focusing on antiwear films formed from oil with ZDDP additive. 

This thesis describes the most in-depth study of a tribological problem by combining 

tribometry and PEEM, along with other characterization methods. 

6.2 Results Summary 

This thesis has presented studies of the wear mechanisms of nearly hydrogen free, 

hard carbon thin films. A main conclusion is that passivation, and not graphitization, is 

responsible for the low friction and low wear of these materials under a wide range of 

conditions. In a self-mated diamond tribological contact where there are shear stresses 

and thermal gradients in a contact, it is not unreasonable to hypothesize that graphitic 

carbon could be formed. At higher RH, these two surfaces could weakly interact and 

would therefore have low friction and wear, much like graphite itself. At lower RH, 

graphite is known to be a poor lubricant. The formation of graphite during sliding would 

create debris and increase friction and wear. However, no evidence of any graphitization 

was observed in any study performed with UNCD or ta-C interfaces. There was some 

degree of rehybridization in the form of amorphous carbon with elevated sp2 content 

found for wear tracks that experienced periods of high friction and had more wear. 

However, this amorphized surface still did not lubricate the interface at low RH, and is 

not the mechanism for low friction. 
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All evidence points toward passivation, specifically by the dissociation of water 

into hydrogen and hydroxyl groups. At high RH, and all loads tested, ta-C and UNCD 

experience a short run-in period followed by low friction. This coincides with extremely 

low wear, which in some cases is nearly immeasurable using optical profilometry 

techniques. The evidence suggests that the little wear that might occur due to asperities 

being polished is quickly followed by the broken bonds being passivated by dissociated 

water. This leads only to mild oxidation of the surface. At low RH, and especially higher 

loads, these films experience high friction and wear. As broken bonds are formed there 

are not enough passivating species to fully saturate the surface, and the bonds on both 

surfaces strongly interact, leading to high friction and wear. Bond breaking is seen to be a 

strong function of apparent contact pressure. If enough wear of the sphere occurs, then at 

a fixed load the contact pressure decreases, causing fewer bonds to be broken per sliding 

pass. This was seen for UNCD in Chapter 3 where the high load, low RH test eventually 

did run in to low friction, but only after the wear track dimensions had significantly 

increased. 

The number of run-in cycles is determined by the availability of the passivating 

vapor species, which further demonstrates that the rates of water adsorption and 

dissociation (further discussed in Chapter 4) compete with the rates of bond breaking and 

trans-interfacial bond formation. Higher RH and longer exposure times enable more 

complete passivation, decreasing the time the system takes to reach steady-state. In order 

to quickly achieve low friction, and therefore have minimal wear from run-in, the system 

requires a sufficient RH level for a given initial load (contact pressure). 
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The balance between bond breaking and passivation also leads to the switching 

phenomenon for UNCD (discussed in Chapter 4). The critical factor here involves the 

relationship between water adsorption and dissociation on a surface and the energy 

barrier to further adsorb and passivate. Since, according to DFT calculations, the energy 

barriers significantly decrease for both adsorption and dissociation with some water 

already present, a tribological bimodality exists. In the low friction case, there is a 

sufficient RH level for water to adsorb and then dissociatively passivate the dangling 

bonds formed during sliding, given an already high level of water on the surface. This 

situation persists until the RH is dropped below a critical threshold. Then the number of 

bonds broken, even if kept constant, cannot be passivated rapidly enough by the available 

water species. There is a combination of two effects: too many unpassivated species, and 

an increase in the energy barriers required to adsorb and to dissociate water. When this 

occurs, the friction transitions to the high state, and at this point the contacting points on 

the surface are not passivated and strongly interact. 

This process is reversible, but hysteretic, requiring a higher RH to recover than 

the level at which the high friction transition occurred. The available water before the 

high friction transition was sufficient because of the presence of water on the surface. 

After the transition there is less water already adsorbed, and with the higher energy 

barriers to adsorb, a higher RH level is needed to kinetically drive the reaction and thus to 

begin replenishing the surface with dissociated water. After the RH is increased above 

this threshold, the passivation happens rather rapidly. Assisted by the positive feedback 

resulting from adsorption-induced lowering of the barriers, areas of water adsorption 
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grow, and water further adsorbs, diffuses, dissociates, and passivates dangling bonds. 

This prevents bonding across the interface and quickly reduces the friction. 

The main result from the experiments using the new imaging apparatus at the 

National Synchrotron Light Source is the success in full-field imaging, with image depth 

and contrast, of both the sphere and flat that made a tribological contact. The NEXAFS 

data acquired showed that while the initial state of the coatings on the sphere and flat 

were different, the surfaces evolved to similar final states. The added surface sensitivity 

of the PEY measurements showed the removal of a top surface layer from both materials 

due to sliding. Running in the sphere on one area of the flat caused rehybridization and 

oxidation on the flat wear track. However, a second track made with the polished sphere 

had little chemical change and barely any wear. This shows that run-in causes the most 

wear and chemical modification for these interfaces. 

An interesting point to consider concerns reducing this run-in phase. Since this 

phase is where the most wear, and therefore debris, comes from, reducing it could enable 

devices that can not tolerate debris particles normally to otherwise function. In Chapter 3 

it was observed that changing the RH level in the environment controlled the number of 

cycles of run-in. In Chapter 4 several examples were shown where a sphere was run in at 

higher humidity, and then the RH was decreased substantially while still maintaining low 

friction (until the RH was below a critical threshold). This suggests that devices could be 

operated in lower humidities (~2%), but first run in at a higher humidity. By performing 

this initial step, the surface conditioning happens in a higher RH environment, and then 

actual use can occur at lower RH without the debris and increased friction during run-in. 
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Alternatively, growing films that are even smoother (which also requires the substrate to 

be sufficiently smooth to begin with) could dramatically reduce the run-in and thus the 

overall wear. 

A second point to consider concerns the switching behavior seen for UNCD. This 

sharp transition would be interesting for a humidity sensing application. By setting the 

correct load and exposure time, the friction performance of a self-mated UNCD contact 

could be used as a trigger to indicate changes in the chemical environment beyond a 

certain threshold value. 

Finally, the results suggest that the pathway to reducing the environmental limits 

of ultra-hard carbon-based films may be through combining the excellent properties that 

have been measured in this thesis, and the range of environments and loads shown, with 

other materials. Voevodin et al. have created so-called 'chameleon' coatings that are able 

to adapt their friction and wear behavior for both dry and humid environments [6.10], as 

well as for changing temperatures [6.11]. It is possible that ta-C or UNCD coatings could 

become a component of a multi-phase coating where the carbon component could be 

responsible for extremely low friction and wear for RH levels between 2.5% and 100%, 

and at contact pressures in the hundreds of MPa. The other components would need to be 

responsible for vacuum conditions, or inert environments below 1.0% RH. 

6.3 Future Work 

There are still interesting avenues of study to more completely understand the 

tribological behavior of these materials. For example, there are further experiments that 

could better verify the conclusions drawn in Chapter 3. The first such experiment would 
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be to create reference samples of UNCD and ta-C that are terminated with known 

chemical species (e.g., hydrogen, hydroxyl, or ester groups) and then measure the 

NEXAFS spectra for these different sample terminations. This is required because most 

of the literature on NEXAFS reference spectra come from molecules in the gas state. 

Each molecule has slightly different transition energies, even for similar bonds (e.g., a C-

C bond for ethane is at 290.8 eV, but the C-C bond in propane is 291.6 eV [6.12]). By 

intentionally terminating these carbon films with various species, the NEXAFS 

references would, ideally, directly correlate with the spectra seen for worn surfaces. 

Another series of measurements would involve using the new PEEM3 at the 

Advanced Light Source. PEEM3 has only been brought online in the last two years. 

Some advantages over PEEM2 (the instrument used for all PEEM measurements in this 

thesis) include higher spatial resolution as well as the ability to cool or heat the sample 

over a much wider temperature range. An added feature of the beamline PEEM3 resides 

at is the ability to have linearly polarized light and to change the angle of polarization in 

the plane of the electric and magnetic field vectors. Unfortunately, due to the fixed 

orientation of the sample and the fixed angle of incidence of the photons on the sample, it 

is not possible to change the angle between the light and the sample normal. However, 

the fixed polarization of the linearly polarized light at PEEM2 (polarization field vector 

parallel to the sample surface) makes it impossible to strongly excite molecular orbitals 

that are perpendicular to the surface. By rotating the polarization of the light from more 

parallel to more perpendicular to the sample surface, information about the bond 
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orientation can be obtained. This would lead to more conclusive evidence about the 

specific type of termination for the worn surfaces. 

While such further work would certainly be beneficial, the new conclusions 

drawn from this thesis demonstrate convincingly that the tribological behavior of ultra-

strong, hydrogen-free, carbon-based films is strongly coupled to surface chemical 

processes. With this knowledge in hand, these materials can be better designed for and 

implemented in tribological applications. A better scientific understanding of 

environmental effects in tribological contacts in general can emerge. 
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Electron-phonon interaction at the Si(111)-7x7 surface 
I. Barke, F. Zheng, A. R. Konicek, R. C. Hatch, and F. J. Himpsel 
Physical Review Letters, Vol. 96, No. 21, 2006, p. 216801/1-4 
 

7.2 Analysis Code 

7.2.1 Profilometry Analysis 
 
[filename, pathname] = uigetfile({'*.asc';'*.txt'}, 'Pick a txt-file'); 
% User selects .asc or .txt file containing topographic data with wear 
track 
  
fullname = strcat(pathname, filename); 
[A, x_range, y_range, I] = heightHeaderLoad(fullname); 
[y,x] = size(A); 
dX = x_range/x; 
dY = y_range/y; 
% Load data file, find the size, calculate the pixel size from the 
header information 
  
fit_fig1 = figure; 
if viewSelect == 1 
    surf(A); 
else 
    surf(I); 
    colormap('gray'); 
end 
shading interp; 
title('Left click 4 points that encompass the wear track.'); 
xlabel('X pixels'); 
ylabel('Y pixels'); 
view(0,90) 
xlim([0 x]) 
ylim([0 y]) 
axis equal; 
axis off; 
[a,b,but] = ginput(4); 
xy = [a,b]; 
negs = find(xy < 1); 
xy(negs) = 1; 
beyondx = find(xy(:,1) > x); 
xy(beyondx,1) = x; 
beyondy = find(xy(:,2) > y); 
xy(beyondy,2) = y; 
minx = round(min(xy(:,1))); 
maxx = round(max(xy(:,1))); 
miny = round(min(xy(:,2))); 
maxy = round(max(xy(:,2))); 
close(fit_fig1) 
% Plot the data and select a rectangle around the track to exclude the 
% track from the plane fit 
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tempA = A; 
tempA(miny:maxy,minx:maxx) = NaN; 
tempA_remove = tempA(:); 
includePoints = find(~isnan(tempA_remove)); 
tempA_remove = tempA_remove(includePoints); 
[X,Y] = meshgrid((1:x),(1:y)); 
X2 = X(:); 
Y2 = Y(:); 
B = [X2(includePoints),Y2(includePoints), 
X2(includePoints).*Y2(includePoints),ones(length(X(includePoints)),1)]; 
p = (B'*B)\(B'*tempA_remove); 
A = A - (p(1)*X + p(2)*Y + p(3)*X.*Y + p(4)); 
% Plane fit the data 
  
A2 = A; 
NaN_loc = find(isnan(A2)); 
A2(NaN_loc) = 0; 
mat_avg = mean(mean(A2)); 
mat_rms = sqrt(mean(mean((A2-mat_avg).^2))); 
too_high = A>3*mat_rms; 
too_low = A<-3*mat_rms; 
too_nan = isnan(A); 
Flagpoints = too_high + too_low + too_nan; 
% Flag errant data 
  
while sum(sum(Flagpoints))~=0 
    for p = 1:y 
        for q = 1:x 
            if Flagpoints(p, q) == 1 
                r = zeros(1, 1); 
                s = zeros(1, 1); 
                DD = 0; 
                row_ok = 1; 
                start_ind = q-1; 
                if start_ind < 1 
                    start_ind = 1; 
                end 
                final_ind = q-round(0.05*x); 
                if final_ind<1 
                    final_ind = 1; 
                end 
                for a = start_ind:-1:final_ind 
                    if Flagpoints(p,a) == 0 
                        DD = DD + 1; 
                        r(DD) = a; 
                        s(DD) = A3(p, a); 
                    end 
                end 
                start_ind = q+1; 
                if start_ind > x 
                    start_ind = x; 
                end 
                final_ind = q+round(0.05*x); 
                if final_ind > x 
                    final_ind = x; 
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                end 
                for b = start_ind:final_ind 
                    if Flagpoints(p, b) == 0 
                        DD = DD + 1; 
                        r(DD) = b; 
                        s(DD) = A3(p, b); 
                    end 
                end 
                if length(r)>=round(0.05*x) 
                    Xrun = mean(s); 
                else 
                    row_ok = 0; 
                end 
                r = zeros(1, 1); 
                s = zeros(1, 1); 
                EE = 0; 
                col_ok = 1; 
                start_ind = p-1; 
                if start_ind < 1 
                    start_ind = 1; 
                end 
                final_ind = p-round(0.05*y); 
                if final_ind<1 
                    final_ind = 1; 
                end 
                for left = start_ind:-1:final_ind 
                    if Flagpoints(left,q) == 0 
                        EE = EE + 1; 
                        r(EE) = left; 
                        s(EE) = A3(left, q); 
                    end 
                end 
                start_ind = p+1; 
                if start_ind > y 
                    start_ind = y; 
                end 
                final_ind = p+round(0.05*y); 
                if final_ind > y 
                    final_ind = y; 
                end 
                for right = start_ind:final_ind 
                    if Flagpoints(right, q) == 0 
                        EE = EE + 1; 
                        r(EE) = right; 
                        s(EE) = A3(right, q); 
                    end 
                end 
                if length(r)>=round(0.05*y) 
                    Yrun = mean(s); 
                else 
                    col_ok = 0; 
                end 
                if row_ok == 1 & col_ok == 1 
                    A3(p,q) = (Xrun+Yrun)/2; 
                    Flagpoints(p,q) = 0; 
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                end 
            end 
        end 
    end 
end 
A = A3; 
% Interpolate flagged data points by spline fitting trusted data 
  
z_trunc = A(miny:maxy,minx:maxx); 
distance = 2 * sliplength * cycles / 1000000; 
Truevolumeremoved = 0; 
Truedebrisvolume = 0; 
Truewearrate = 0; 
Depthsum = 0; 
Depthsumsquared = 0; 
Maxdepth = 0; 
above_plane = z_trunc>0; 
below_plane = z_trunc<0; 
Truevolumeremoved = abs(sum(sum(z_trunc(below_plane)))*dX*dY/(1000^4)); 
Truedebrisvolume = abs(sum(sum(z_trunc(above_plane)))*dX*dY/(1000^4)); 
Maxdepth = min(min(z(miny:maxy,minx:maxx))); 
Averagedepth = mean(mean(z_trunc(below_plane))); 
Avg_depth_str = num2str(Averagedepth, 7); 
Avg_depth_cat = ['Average depth = ', Avg_depth_str, ' nm']; 
Max_depth_str = num2str(Maxdepth, 7); 
Max_depth_cat = ['Maximum depth = ', Max_depth_str, ' nm']; 
RMS = (mean(mean(z(miny:maxy,minx:maxx).^2)))^0.5; 
RMS_str = num2str(RMS, 7); 
RMS_cat = ['RMS = ', RMS_str, ' nm']; 
Truevolumeremoved_str = num2str(Truevolumeremoved, 7); 
Truevolumeremoved_cat = ['True volume removed = ', 
Truevolumeremoved_str, ' mm^3']; 
Truedebrisvolume_str = num2str(Truedebrisvolume); 
Truedebrisvolume_cat = ['True debris volume = ', Truedebrisvolume_str, 
' mm^3']; 
Truewearrate = Truevolumeremoved / (load * distance); 
Truewearrate_str = num2str(Truewearrate, 7); 
Truewearrate_cat = ['True wear rate = ', Truewearrate_str, ' 
mm^3/N*m']; 
Wear_results = char(Avg_depth_cat , Max_depth_cat , RMS_cat ,... 
    Truevolumeremoved_cat , Truewearrate_cat, Truedebrisvolume_cat) 
% Calculate the volume removed, debris volume, maximum depth, average 
% depth, and wear rate from the data 
 

7.2.2 Spectroscopy Analysis 
 
[filename, pathname] = uigetfile({'*.dat;*.txt', 'Spectrum Files 
(*.dat,*.txt)'}, 'Pick a data file'); 
  
% Loads the pathname containing the data to be analyzed. It is 
understood the files are listed alphabetically, and, pair-wise, in the 
order of the data file and then the normalization file. 
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% The following boolean variables are '1' for yes/do/on or '0' for 
% no/don't/off unless otherwise specified 
film_bool = 1; % Boolean variable for film type, 1 for UNCD, 0 for ta-C 
stack_save_bool = 1; 
sep_save_bool = 1; 
stndv_save_bool = 1; 
% Boolean variables controlling whether processed data is saved 
linfit_bool = 1; % Boolean variable for whether to perform linear fit 
on data 
  
dat_files = dir(fullfile(pathname, '\*.dat')); 
% Search the pathname for all .dat files (file format for NEXAFS data) 
  
if (stack_save_bool == 1) || (sep_save_bool == 1) || (stndv_save_bool 
== 1) 
    try 
        warning off 
        mkdir([pathname, '\Saved Spectra']) 
    catch 
    end 
end 
  
for j = 1:(length(dat_files)/2) 
    sample_file_name = [pathname, dat_files(2*j-1).name]; 
    I0_file_name = [pathname, dat_files(2*j).name]; 
  
    E = loadWithHeader(sample_file_name); 
    F = loadWithHeader(I0_file_name); 
    % Loads sample and I0 file, pair-wise 
    [G] = smooth(F); 
    % Smooths I0 spectrum (should be fine since no I0 has a sharp 
feature) 
  
    [C, L1, L2] = interpolate(E); 
    [D] = interpolate(G); 
    % Interpolate data and I0 
  
    X = zeros(L1,L2); 
    X(:,1) = C(:,1); 
    % Zero matrix to the size of the incoming data, and set first 
column to be the energy column from the interpolated data matrix 
  
    [not_used, index1] = findValInd(X, X(1,1)); 
    [not_used, index2] = findValInd(X, X(1,1)+2.5); 
    C_avg = repmat(mean(C(index1:index2,2:L2)),L1,1); 
    D_avg = repmat(mean(D(index1:index2,2:L2)),L1,1); 
    X(:,2:L2) = (C(:,2:L2)./C_avg)./(D(:,2:L2)./D_avg)-1; 
    % First find the start and end indeces of the first 2.5 eV worth of 
data. Create two replicated matrices, one for data and one for I0, of 
their respective mean values between the found indeces. Normalize the 
data by taking the data divided by its mean, and dividing that by the 
I0 divided by its mean. 
  
    if X(1,1) < 285 && film_bool == 1 
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        [not_used, xyz] = findValInd(X, max(X(:,2))/2, 2); 
        X(:,1) = X(:,1) - X(xyz,1) + 289; 
    elseif X(1,1) < 285 && film_bool == 2 
        [mid_index, real_peak_pos] = piMaxMinFind(X); 
        X(:,1) = X(:,1) - X(real_peak_pos,1) + 285; 
    end 
    % Correct the energy axis of every spectrum using the location of 
the edge-jump for UNCD and the location of the pi* peak for ta-C. 
     
    U = X; % First matrix that will store the as-normalized data 
  
    if linfit_bool == 1 
        if 260 < X(1,1) && X(1,1) < 285 
            [not_used, index1] = findValInd(X, 277); 
            [not_used, index2] = findValInd(X, 282); 
            V = X; 
            for i = 2:L2 
                preedgelinfitparam(:,i-1) = 
polyFitPlus(X(index1:index2,1), X(index1:index2,i), 1); 
                V(:,i) = X(:,i) - (preedgelinfitparam(1,i-1)*X(:,1) + 
preedgelinfitparam(2,i-1)); 
            end 
            X = V; 
            if X(L1,1) < 320 
                E1 = L1; 
            else 
                [not_used, E1] = findValInd(X,320); 
            end 
        elseif 335 < X(1,1) && X(1,1) < 345 
            [not_used, index1] = findValInd(X, X(1,1)+1); 
            [not_used, index2] = findValInd(X, X(1,1)+5); 
            V = X; 
            for i = 2:L2 
                preedgelinfitparam(:,i-1) = 
polyFitPlus(X(index1:index2,1), X(index1:index2,i), 1); 
                V(:,i) = X(:,i) - (preedgelinfitparam(1,i-1)*X(:,1) + 
preedgelinfitparam(2,i-1)); 
            end 
            X = V; 
            [not_used, E1] = findValInd(X,X(end,1)-2); 
        elseif 380 < X(1,1) && X(1,1) < 400 
            [not_used, index1] = findValInd(X, X(1,1)+2); 
            [not_used, index2] = findValInd(X, 395); 
            V = X; 
            for i = 2:L2 
                preedgelinfitparam(:,i-1) = 
polyFitPlus(X(index1:index2,1), X(index1:index2,i), 1); 
                V(:,i) = X(:,i) - (preedgelinfitparam(1,i-1)*X(:,1) + 
preedgelinfitparam(2,i-1)); 
            end 
            X = V; 
            [not_used, E1] = findValInd(X,X(end,1)-2); 
        elseif 500 < X(1,1) && X(1,1) < 540 
            [not_used, index1] = findValInd(X, 522); 
            [not_used, index2] = findValInd(X, 527); 
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            V = X; 
            for i = 2:L2 
                preedgelinfitparam(:,i-1) = 
polyFitPlus(X(index1:index2,1), X(index1:index2,i), 1); 
                V(:,i) = X(:,i) - (preedgelinfitparam(1,i-1)*X(:,1) + 
preedgelinfitparam(2,i-1)); 
                V(:,i) = V(:,i) - min(V(:,i)); 
            end 
            X = V; 
            [not_used, E1] = findValInd(X,X(end,1)-2); 
        elseif 690 < X(1,1) && X(1,1) < 710 
            [not_used, index1] = findValInd(X, 702); 
            [not_used, index2] = findValInd(X, 708); 
            V = X; 
            for i = 2:L2 
                preedgelinfitparam(:,i-1) = 
polyFitPlus(X(index1:index2,1), X(index1:index2,i), 1); 
                V(:,i) = X(:,i) - (preedgelinfitparam(1,i-1)*X(:,1) + 
preedgelinfitparam(2,i-1)); 
            end 
            X = V; 
            [not_used, E1] = findValInd(X,X(end,1)-2); 
        elseif 1010 < X(1,1) && X(1,1) < 1030 
            [not_used, index1] = findValInd(X, X(1,1)+1); 
            [not_used, index2] = findValInd(X, X(1,1)+8); 
            V = X; 
            for i = 2:L2 
                preedgelinfitparam(:,i-1) = 
polyFitPlus(X(index1:index2,1), X(index1:index2,i), 1); 
                V(:,i) = X(:,i) - (preedgelinfitparam(1,i-1)*X(:,1) + 
preedgelinfitparam(2,i-1)); 
                V(:,i) = V(:,i) - min(V(:,i)); 
            end 
            X = V; 
            [not_used, E1] = findValInd(X,X(end,1)-2); 
        elseif 1045 < X(1,1) && X(1,1) < 1055 
            [not_used, index1] = findValInd(X, X(1,1)+3); 
            [not_used, index2] = findValInd(X, X(1,1)+10); 
            V = X; 
            for i = 2:L2 
                preedgelinfitparam(:,i-1) = 
polyFitPlus(X(index1:index2,1), X(index1:index2,i), 1); 
                V(:,i) = X(:,i) - (preedgelinfitparam(1,i-1)*X(:,1) + 
preedgelinfitparam(2,i-1)); 
                V(:,i) = V(:,i) - min(V(:,i)); 
            end 
            X = V; 
            [not_used, E1] = findValInd(X,X(end,1)-2); 
        end 
    end 
    % If the boolean variable for linear fit is true, perform a linear 
fit on the data from the flat portion in the pre-edge of each spectrum, 
and then subtracting that fit from the whole spectrum. 
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    W = X; % Second matrix that will store the normalized and linear 
fit data 
    Y = X; % Third matrix that will store the normalized, linear fit, 
and post-edge divided data 
    Z = X; % Fourth matrix that will store the normalized, linear fit, 
post-edge divided, and separated data 
     
    if linfit_bool == 1 
        for i = 2:L2 
            if (abs(X(E1,2:L2)) == X(E1,2:L2)) && E1 > 0 
                diviSOR = X(E1,i); 
            else 
                diviSOR = 1; 
            end 
            if i == 2 
                Y(:,i) = X(:,i)./diviSOR; 
                Z(:,i) = Y(:,i); 
            else 
                Y(:,i) = X(:,i)./diviSOR; 
                MinColumnBefore = min(Z(:,i-1)); 
                Z(:,i) = (X(:,i))./(diviSOR); 
                MaxColumnCurrent = max(Z(:,i)); 
                if X(1,1) < 285 && film_bool == 1 
                    Z(:,i) = (X(:,i))./(diviSOR) + MinColumnBefore - 
0.7 * MaxColumnCurrent; 
                elseif X(1,1) < 285 && film_bool == 0 
                    Z(:,i) = (X(:,i))./(diviSOR) + MinColumnBefore - 
0.3 * MaxColumnCurrent; 
                else 
                    Z(:,i) = (X(:,i))./(diviSOR) + MinColumnBefore - 
0.75 * MaxColumnCurrent; 
                end 
            end 
        end 
    end 
    % Section that performs the data manipulation as described above 
  
    NoLinNoDivStackData = U; 
    LinNoDivStackData = W; 
    LinDivStackData = Y; 
    LinDivSepData = Z; 
  
    if (stack_save_bool == 1) || (sep_save_bool == 1) || 
(stndv_save_bool == 1) 
        F = ['%5.8f ']; 
        for i = 1:(L2-2) 
            F = [F,'%5.8f ']; 
        end 
        F = [F, '%5.8f\r']; 
        label = [('Energy_(eV)')]; 
        for i = 1:(L2-1) 
            num=num2str(i); 
            label= [label, ' data',num]; 
        end 
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        newfile1 = regexprep(dat_files(2*j-1).name, '.dat', '_', 
'ignorecase'); 
        if stndv_save_bool == 1 
            normfile_name_NoLinStackNoDiv = [pathname, 'Saved 
Spectra\', newfile1, 'norm_', 'NoLinStackNoDiv.dat']; 
            [fid0, message] = fopen(normfile_name_NoLinStackNoDiv, 
'w'); 
            fprintf(fid0,'%s\r',label); 
            fprintf(fid0, F, NoLinNoDivStackData'); 
            fclose(fid0); 
             
            normfile_name_StackNoDiv = [pathname, 'Saved Spectra\', 
newfile1, 'norm_', 'StackNoDiv.dat']; 
            [fid1, message] = fopen(normfile_name_StackNoDiv, 'w'); 
            fprintf(fid1,'%s\r',label); 
            fprintf(fid1, F, LinNoDivStackData'); 
            fclose(fid1); 
        end 
        if stack_save_bool == 1 
            normfile_name_Stacked = [pathname, 'Saved Spectra\', 
newfile1, 'norm_', 'Stacked.dat']; 
            fid2 = fopen(normfile_name_Stacked, 'w'); 
            fprintf(fid2,'%s\r',label); 
            fprintf(fid2, F, LinDivStackData'); 
            fclose(fid2); 
        end 
        if sep_save_bool == 1 
            normfile_name_Separated = [pathname, 'Saved Spectra\', 
newfile1, 'norm_', 'Separated.dat']; 
            fid3 = fopen(normfile_name_Separated, 'w'); 
            fprintf(fid3,'%s\r',label); 
            fprintf(fid3, F, LinDivSepData'); 
            fclose(fid3); 
        end 
    end     
    % If save booleans are true, it creates column headers for the data 
and then saves the specified files with the original name plus a suffix 
describing the type of data. File format is .dat. 
end 
 

7.2.3 Chemical Mapping 
 
mainDir = 'Example Directory\'; 
% Active directory containing sub-directories containing PEEM images 
  
dirList = dir(mainDir); % List all subdirectories 
  
dirCount = 0; 
  
for kk = 1:length(dirList) 
    doIT = 0; % Boolean variable to decide if directory should be 
analyzed 
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    if length(dirList(kk).name) > 3 && isdir([mainDir, 
dirList(kk).name]) % Check if variable in dirList is indeed a directory 
        if dirList(kk).name(end) == 'C' % Check if directory contains 
carbon movie 
            % Pt_pathname = [mainDir, 'UNCD_UFL_3_C_Pt_52\']; 
            Pt_pathname = [mainDir, 'ta-C_UFL_3_C_Pt_21\']; 
            doIT = 1; 
            % If so use carbon platinum movie as normalization, go 
through with script 
        elseif dirList(kk).name(end) == 'O' % Check if directory 
contains oxygen movie 
            % Pt_pathname = [mainDir, 'UNCD_UFL_3_O_Pt_51\']; 
            Pt_pathname = [mainDir, 'Test_O_Pt\']; 
            doIT = 1; 
            % If so use oxygen platinum movie as normalization, do not 
go through with code as current subscripts do not analyze for oxygen 
spectra 
        elseif dirList(kk).name(end) == 'N' % Check if directory 
contains oxygen movie 
            % Pt_pathname = [mainDir, 'UNCD_UFL_3_O_Pt_51\']; 
            Pt_pathname = [mainDir, 'ta-C_UFL_3_O_Pt_20\']; 
            doIT = 1; 
            % If so use oxygen platinum movie as normalization, do not 
go through with code as current subscripts do not analyze for oxygen 
spectra 
        end 
        if doIT == 1 % If above conditions say go: 
            dirCount = dirCount + 1; 
            currentDirectoryPathname = [mainDir, dirList(kk).name] % 
Create a path name for the current directory containing images to map 
            savePrefix = dirList(kk).name(end-3:end); 
            [dontuse1, Data_file, dontuse2, testing_start, 
testing_stop] = loadDatFile(currentDirectoryPathname); 
            % Runs the function loadDatFile.m which will extract the 
energy column associated with the images. There's an alternative input 
to the function where you can select what range of energies you want to 
look at. If this is done, 'testing_start' and 'testing_stop' will give 
indeces that relate to the first and last energy you want to look at. 
            sample_tif_files = dir(fullfile(currentDirectoryPathname, 
'\*.tif')); % List all .tif images in data movie folder 
            Pt_tif_files = dir(fullfile(Pt_pathname, '\*.tif')); % List 
all .tif images in platinum movie folder 
            sample_file_name = [currentDirectoryPathname, '\', 
sample_tif_files(1).name]; % Create a variable concatenating the path 
name with the first .tif image 
            S = double(imread(sample_file_name)); % Load in the image 
and call it variable 'S' 
            [L1,L2] = size(S); % Find the size of the image 
            cutUpSize = 400; 
            xFull = floor(L2/cutUpSize); 
            yFull = floor(L1/cutUpSize); 
            xOver = mod(L2,cutUpSize); 
            yOver = mod(L1,cutUpSize); 
            if xOver > (cutUpSize/2) 
                totalX = xFull + 1; 
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            else 
                totalX = xFull; 
            end 
            if yOver > (cutUpSize/2) 
                totalY = yFull + 1; 
            else 
                totalY = yFull; 
            end 
            % This is that section I talked about that defines a square 
size to partition pieces of the images for separate analysis, and  
generated depending on cutUpSize. 
            dataNorm = zeros(L1,L2); 
            ptNorm = zeros(L1,L2); 
  
            index1 = find(Data_file(:,1)>=Data_file(1,1)+1.5,1); 
            index2 = find(Data_file(:,1)>=Data_file(1,1)+5,1); 
  
            avgCounter = 0; 
            for ii = index1:index2 
                sample_file_name = [currentDirectoryPathname, '\', 
sample_tif_files(ii).name]; % Same protocol as above, but now looped 
for all images 
                S = double(imread(sample_file_name)); % Read the 
indexed data movie image as 'S' 
                Pt_file_name = [Pt_pathname, '\', 
Pt_tif_files(ii).name]; % Same as for data, but now for platinum 
                P = double(imread(Pt_file_name)); % Read the indexed 
platinum movie image as 'P' 
                if size(S) == size(P) 
                    avgCounter = avgCounter + 1; 
                    dataNorm = dataNorm + S; 
                    ptNorm = ptNorm + P; 
                else 
                    [L4,L5] = size(P); 
                    if L1 > L4 
                        too_long = L1 - L4; 
                        start_top = 1; 
                        for jj = 1:too_long 
                            if start_top == 1 
                                P = vertcat(P(1,:),P); 
                                start_top = 0; 
                            elseif start_top == 0 
                                P = vertcat(P,P(length(P),:)); 
                                start_top = 1; 
                            end 
                        end 
                    elseif L1 < L4 
                        too_long = L4 - L1; 
                        start_top = 1; 
                        for jj = 1:too_long 
                            if start_top == 1 
                                P(1,:) = []; 
                                start_top = 0; 
                            elseif start_top == 0 
                                P(length(P),:) = []; 
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                                start_top = 1; 
                            end 
                        end 
                    end 
                    % The above if-statement simply corrects the 
platinum image if it is not the same size as the data by either adding 
copied rows to the top or bottom (alternating) or removing rows in the 
same manner 
                    avgCounter = avgCounter + 1; 
                    dataNorm = dataNorm + S; 
                    ptNorm = ptNorm + P; 
                end 
            end 
            % Same section that creates the normalization images for 
the sample and platinum images. 
  
            if ~isempty(find(dataNorm<=0,1)) 
                dataNorm(find(dataNorm<=0)) = 1; 
            end 
            if ~isempty(find(ptNorm<=0,1)) > 0 
                ptNorm(find(ptNorm<=0)) = 1; 
            end 
  
            dataNorm = dataNorm ./ avgCounter; 
            ptNorm = ptNorm ./ avgCounter; 
  
            try 
                warning off 
                mkdir([currentDirectoryPathname, '\PDFs']) 
            catch 
            end 
  
            A = zeros(L1,L2); 
            B = zeros(L1,L2); 
            C = zeros(L1,L2); 
            D = zeros(L1,L2); 
            E = zeros(L1,L2); 
            % A-D or A-E will be used to store the reassembled pieces 
of the finished chemical map. 
  
            counter = 0; 
            for qq = 1:xFull 
                for rr = 1:yFull 
                    counter = counter + 1; 
                    if qq < xFull && rr < yFull 
                        x1 = (qq-1)*cutUpSize+1; 
                        x2 = qq*cutUpSize; 
                        y1 = (rr-1)*cutUpSize+1; 
                        y2 = rr*cutUpSize; 
                    elseif qq < xFull && rr == yFull 
                        x1 = (qq-1)*cutUpSize+1; 
                        x2 = qq*cutUpSize; 
                        y1 = (rr-1)*cutUpSize+1; 
                        y2 = L1; 
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                    elseif qq == xFull && rr < yFull 
                        x1 = (qq-1)*cutUpSize+1; 
                        x2 = L2; 
                        y1 = (rr-1)*cutUpSize+1; 
                        y2 = rr*cutUpSize; 
                    elseif (qq == xFull) && (rr == yFull) 
                        x1 = (qq-1)*cutUpSize+1; 
                        x2 = L2; 
                        y1 = (rr-1)*cutUpSize+1; 
                        y2 = L1; 
                    end 
                    % Determine range of index values for current piece 
of the image to analyze. 
  
                    dataSubset = NaN(y2-y1+1,x2-x1+1,testing_stop-
testing_start+1); 
                    % Re-null the variable holding the current piece of 
the movie, which should have dimensions (cutUpSize, cutUpSize, 
testing_stop-testing_start+1). 
                    for mm = testing_start:testing_stop 
                        sample_file_name = [currentDirectoryPathname, 
'\', sample_tif_files(mm).name]; % Same protocol as above, but now 
looped for all images 
                        S = double(imread(sample_file_name)); % Read 
the indexed data movie image as 'S' 
                        Pt_file_name = [Pt_pathname, '\', 
Pt_tif_files(mm).name]; % Same as for data, but now for platinum 
                        P = double(imread(Pt_file_name)); % Read the 
indexed platinum movie image as 'P' 
                        normImages = (S./dataNorm)./(P./ptNorm); % If 
the same size, index-wise divide the matrices and assign to the correct 
location in 'Norm_images' 
                        dataSubset(:,:,mm) = normImages(y1:y2,x1:x2); 
                    end 
                    % Loads each image from the data and platinum, 
performs image normalization, and then saves the piece to dataSubset. 
  
                    [chemicalMapPiece, map_type] = 
spectraManipulation2(dataSubset, Data_file, currentDirectoryPathname); 
                    % Run spectraManipulation2.m subscript that will 
extract information from the images and generate chemicalMapPiece 
structure with map_type 1 being carbon, 2 being oxygen 
  
                    if map_type == 1 
                        A(y1:y2,x1:x2) = chemicalMapPiece.cM1; 
                        B(y1:y2,x1:x2) = chemicalMapPiece.cM2; 
                        C(y1:y2,x1:x2) = chemicalMapPiece.cM3; 
                        D(y1:y2,x1:x2) = chemicalMapPiece.cM4; 
                        E(y1:y2,x1:x2) = chemicalMapPiece.cM5; 
                    elseif map_type == 2 
                        A(y1:y2,x1:x2) = chemicalMapPiece.cM1; 
                        B(y1:y2,x1:x2) = chemicalMapPiece.cM2; 
                        C(y1:y2,x1:x2) = chemicalMapPiece.cM3; 
                        D(y1:y2,x1:x2) = chemicalMapPiece.cM4; 
                    end 
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                    % Once the subset has been created, analyzed, 
the piece is put in the correct position of the final matrix (A-E or A-
D, depending on element). 
                end 
            end 
  
            if map_type == 1 
                Sp2_name = [currentDirectoryPathname, '\', savePrefix, 
'_Sp2Frac']; 
                Ratio_name = [currentDirectoryPathname, '\', 
savePrefix, '_CRatio']; 
                Pi_name = [currentDirectoryPathname, '\', savePrefix, 
'_CPi']; 
                Sigma_name = [currentDirectoryPathname, '\', 
savePrefix, '_CSigma']; 
                Area_name = [currentDirectoryPathname, '\', savePrefix, 
'_CArea']; 
                save(Sp2_name, 'A', '-ASCII'); 
                save(Ratio_name, 'B', '-ASCII'); 
                save(Pi_name, 'C', '-ASCII'); 
                save(Sigma_name, 'D', '-ASCII'); 
                save(Area_name, 'E', '-ASCII'); 
            elseif map_type == 2 
                oxyPiM_name = [currentDirectoryPathname, '\', 
savePrefix, '_OPi']; 
                oxySigM_name = [currentDirectoryPathname, '\', 
savePrefix, '_OSigma']; 
                Ratio_name = [currentDirectoryPathname, '\', 
savePrefix, '_ORatio']; 
                Area_name = [currentDirectoryPathname, '\', savePrefix, 
'_OArea']; 
                save(oxyPiM_name, 'A', '-ASCII'); 
                save(oxySigM_name, 'B', '-ASCII'); 
                save(Ratio_name, 'C', '-ASCII'); 
                save(Area_name, 'D', '-ASCII'); 
            end 
            % Save chemical maps with appropriate name to folder 
containing .tif images 
        end 
    end 
end 
 

7.2.4 Subscripts 
 
function [C,index1,index2] = 
derivative(file_name,energy_step,index_energy_1,index_energy_2) 
  
A = file_name; 
  
[L1,L2] = size(A); 
  
[tf, index1] = findValInd(A, index_energy_1); 
[tf, index2] = findValInd(A, index_energy_2); 
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deriv_range = int32(0.2/energy_step); 
  
for i = index1:index2 
    imin = i - deriv_range; 
    imax = i + deriv_range; 
    B = polyFitPlus(A(imin:imax, 1), A(imin:imax, 2), 1); 
    C(i-index1+1) = B(1,1); 
    clear B 
end 
 
 
function [value, index] = findValInd(mat_in, value, col_sel) 
  
if nargin == 2 
    col_sel = 1; 
end 
  
range_val = mat_in(2,col_sel)-mat_in(1,col_sel); 
  
  
if value > max(mat_in(:,col_sel)) 
    index = length(mat_in(:,col_sel)); 
    value = mat_in(index,col_sel);     
else 
    index = find(mat_in(:,col_sel) >= (value-0.05*range_val),1); 
    value = mat_in(index,col_sel); 
end 
 
 
function [A, x_range, y_range, I] = heightHeaderLoad(fullname) 
  
fid = fopen(fullname,'r'); 
  
line_read = fgetl(fid); 
  
if line_read(1) ~= '#' && line_read(1) ~= 'Z' && line_read(1) ~= '\' 
    A = load(fullname); 
    I = []; 
    x_range = 0; 
    y_range = 0; 
  
    simple_text = 1; 
  
    fclose(fid); 
else 
    fid = fopen(fullname,'r'); 
  
    line_read = fgetl(fid); 
  
    if line_read(1) == '#' 
        header_read_done = 0; 
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        while header_read_done ~= 1 
  
            if line_read(1:7) == '# x-pix' 
                line_length = length(line_read); 
                x_pixels_num = str2num(line_read(14:line_length)); 
                x = int32(x_pixels_num); 
            end 
  
            if line_read(1:7) == '# y-pix' 
                line_length = length(line_read); 
                y_pixels_num = str2num(line_read(14:line_length)); 
                y = int32(y_pixels_num); 
            end 
  
            if line_read(1:7) == '# x-len' 
                line_length = length(line_read); 
                x_range = str2num(line_read(14:line_length))/1000; 
            end 
  
            if line_read(1:7) == '# y-len' 
                line_length = length(line_read); 
                y_range = str2num(line_read(14:line_length))/1000; 
                header_read_done = 1; 
            end 
            line_read = fgetl(fid); 
        end 
  
        count = 0; 
        while count < y 
            line_read = fgetl(fid); 
            first_symbol = line_read(1); 
            if first_symbol ~= '#' 
                count = count + 1; 
                k = textscan(line_read, '%n', 'delimiter', ' '); 
                A(count,1:x) = k{1}; 
            end 
        end 
        I = []; 
  
    elseif line_read(1:4) == 'Zygo' 
  
        for ii = 1:7 
            line_read = fgetl(fid); 
        end 
  
        space_loc = regexp(line_read, ' '); 
        intfScaleFactor = 
str2num(line_read(space_loc(1)+1:space_loc(2)-1)); 
        wavelengthIn = str2num(line_read(space_loc(2)+1:space_loc(3)-
1)); 
        obliquityFactor = 
str2num(line_read(space_loc(4)+1:space_loc(5)-1)); 
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        cameraRes = str2num(line_read(space_loc(6)+1:space_loc(7)-
1))*10^6; 
  
        line_read = fgetl(fid); 
  
        space_loc = regexp(line_read, ' '); 
        x_width = str2num(line_read(1:space_loc(1)-1)); 
        y_height = str2num(line_read(space_loc(1)+1:space_loc(2)-1)); 
  
        x_range = x_width*cameraRes; 
        y_range = y_height*cameraRes; 
  
        for ii = 1:2 
            line_read = fgetl(fid); 
        end 
  
        phaseRes = str2num(line_read(1)); 
        if phaseRes == 0; 
            R = 4096; 
        else 
            R = 32768; 
        end 
  
        for ii = 1:4 
            line_read = fgetl(fid); 
        end 
  
        line_read = ' '; 
        row_count = 1; 
  
        C = zeros(ceil(x_width*y_height/10),10); 
  
        while line_read(1) ~= '#' 
            line_read = fgetl(fid); 
  
            if line_read(1) ~= '#' 
                k = textscan(line_read, '%n', 'delimiter', ' '); 
                C(row_count,:) = k{1}; 
                row_count = row_count + 1; 
            end 
        end 
  
        B = reshape(C',x_width,y_height); 
        I = B'; 
  
        line_read = ' '; 
        row_count = 1; 
  
        C = zeros(ceil(x_width*y_height/10),10); 
  
        while line_read(1) ~= '#' 
            line_read = fgetl(fid); 
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            if line_read(1) ~= '#' 
                k = textscan(line_read, '%n', 'delimiter', ' '); 
                C(row_count,:) = k{1}; 
                row_count = row_count + 1; 
            end 
        end 
  
        indMax = find(C == 2147483640 | C == -2147483640); 
        C(indMax) = NaN; 
  
        B = reshape(C',x_width,y_height); 
        A = B'; 
        A = A.*(intfScaleFactor*obliquityFactor*wavelengthIn/R)*10^9; 
         
    elseif line_read(1:4) == '\' 
  
        for ii = 1:7 
            line_read = fgetl(fid); 
        end 
  
        space_loc = regexp(line_read, ' '); 
        intfScaleFactor = 
str2num(line_read(space_loc(1)+1:space_loc(2)-1)); 
        wavelengthIn = str2num(line_read(space_loc(2)+1:space_loc(3)-
1)); 
        obliquityFactor = 
str2num(line_read(space_loc(4)+1:space_loc(5)-1)); 
  
        cameraRes = str2num(line_read(space_loc(6)+1:space_loc(7)-
1))*10^6; 
  
        line_read = fgetl(fid); 
  
        space_loc = regexp(line_read, ' '); 
        x_width = str2num(line_read(1:space_loc(1)-1)); 
        y_height = str2num(line_read(space_loc(1)+1:space_loc(2)-1)); 
  
        x_range = x_width*cameraRes; 
        y_range = y_height*cameraRes; 
  
        for ii = 1:2 
            line_read = fgetl(fid); 
        end 
  
        phaseRes = str2num(line_read(1)); 
        if phaseRes == 0; 
            R = 4096; 
        else 
            R = 32768; 
        end 
  
        for ii = 1:4 
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            line_read = fgetl(fid); 
        end 
  
        line_read = ' '; 
        row_count = 1; 
  
        C = zeros(ceil(x_width*y_height/10),10); 
  
        while line_read(1) ~= '#' 
            line_read = fgetl(fid); 
  
            if line_read(1) ~= '#' 
                k = textscan(line_read, '%n', 'delimiter', ' '); 
                C(row_count,:) = k{1}; 
                row_count = row_count + 1; 
            end 
        end 
  
        B = reshape(C',x_width,y_height); 
        I = B'; 
  
        line_read = ' '; 
        row_count = 1; 
  
        C = zeros(ceil(x_width*y_height/10),10); 
  
        while line_read(1) ~= '#' 
            line_read = fgetl(fid); 
  
            if line_read(1) ~= '#' 
                k = textscan(line_read, '%n', 'delimiter', ' '); 
                C(row_count,:) = k{1}; 
                row_count = row_count + 1; 
            end 
        end 
  
        indMax = find(C == 2147483640 | C == -2147483640); 
        C(indMax) = NaN; 
  
        B = reshape(C',x_width,y_height); 
        A = B'; 
        A = A.*(intfScaleFactor*obliquityFactor*wavelengthIn/R)*10^9; 
    end 
  
    fclose(fid); 
  
end 
 
 
function [InterpData, L3, L4, energy_step] = interpolate(RawData, 
energy_step) 
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if nargin == 1 
    energy_step = 0.02; 
end 
  
dupCheck = diff(RawData(:,1)); 
dupIndex = find(dupCheck == 0); 
if ~isempty(dupIndex) 
    RawData(dupIndex,:) = []; 
end 
  
[L1,L2]= size(RawData); % Ascertain the size of the inputted data 
matrix. 
  
if RawData(1,1) > RawData(2,1) % Checks to make sure that the energy 
column runs from low to high, and swaps it if it doesn't. 
    for i = 1:L1 
        RawDatasub(i,:) = RawData(L1+1-i,:); 
    end 
    RawData = RawDatasub; 
end 
  
NewData(:,1) = round(10*RawData(:,1))/10; % This rounds the energy 
column of the data to the ones place. 
  
it_run = int32((NewData(L1,1) - NewData(1,1))/energy_step + 1); 
  
InterpData = zeros(it_run,L2); 
  
InterpData(:,1) = [NewData(1,1):energy_step:NewData(L1,1)]; 
  
InterpData(:,2:L2) = 
interp1(RawData(:,1),RawData(:,2:L2),InterpData(:,1),'linear','extrap')
; 
  
[L3,L4] = size(InterpData); 
 
 
function [A] = loadWithHeader(file_name_data) 
  
fid1 = fopen(file_name_data,'r'); 
  
header = 0; 
no_header = 0; 
while header ~= 1 
    line_read = fgetl(fid1); 
    line_read_E = str2num(line_read(1)); 
    if line_read(1) ~= 'E' 
        A = load(file_name_data); 
        header = 1; 
        no_header = 1; 
    end 
    header = 1; 
end 
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first_symbol = 1; 
  
if no_header ~= 1 
    count = 0; 
    while first_symbol ~= -1 
        line_read = fgetl(fid1); 
        first_symbol = line_read(1); 
        if (first_symbol ~= 'E') && (first_symbol ~= -1) 
            count = count + 1; 
            k = textscan(line_read, '%n', 'delimiter', ' '); 
            A(count,:) = k{1}; 
        end 
    end 
end 
  
fclose(fid1); 
 
 
function [real_peak_pos, sp2ratio, pistarratio, real_peak_hgt] = 
main(data, matOrFile) 
  
if matOrFile == 1 
    D = data; 
else 
    [D] = loadWithHeader(data); 
end 
  
if D(2,1)-D(1,1) > 0.1 
    [Y, L1, L2, energy_step] = interpolate(D); 
else 
    Y = D; 
    [L1,L2] = size(Y); 
end 
 
[not_used, index1] = findValInd(Y, 283); 
[not_used, index2] = findValInd(Y, 287); 
  
ii = index1+9; 
  
peaks_found = []; %First row is peak energy, second is peak height, 
third is intensity at the lower min, fourth is intensity at the upper 
min 
peaks_counter = 0; 
while ii < index2 - 10 
    ii = ii + 1; 
  
    if Y(ii,2) > max(Y(ii-10:ii-1,2)) && Y(ii,2) > max(Y(ii+1:ii+10,2)) 
        peaks_counter = peaks_counter + 1; 
  
        peaks_found(1,peaks_counter) = Y(ii,1); 
        peaks_found(2,peaks_counter) = Y(ii,2); 
        peaks_found(3,peaks_counter) = min(Y(ii-5:ii-1,2)); 
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        peaks_found(4,peaks_counter) = min(Y(ii+1:ii+5,2)); 
        peaks_found(5,peaks_counter) = Y(ii-3,1); 
        peaks_found(6,peaks_counter) = Y(ii+3,1); 
  
        for jj = ii-6:-5:index1 
            if min(Y(jj-4:jj,2)) < peaks_found(3,peaks_counter) 
                peaks_found(3,peaks_counter) = min(Y(jj-4:jj,2)); 
                peaks_found(5,peaks_counter) = Y(jj-2,1); 
            else 
                break 
            end 
        end 
  
        for kk = ii+6:5:index2 
            if min(Y(kk:kk+4,2)) < peaks_found(4,peaks_counter) 
                peaks_found(4,peaks_counter) = min(Y(kk:kk+4,2)); 
                peaks_found(6,peaks_counter) = Y(kk+2,1); 
            else 
                break 
            end 
        end 
    end 
end 
  
intensity_mins = min(peaks_found(3:4,:)); 
peak_diffs = abs(peaks_found(2,:)-intensity_mins); 
  
peak_diffs_mean = mean(peak_diffs); 
peak_diffs_std = std(peak_diffs); 
  
outliers = find(peak_diffs < (peak_diffs_mean - 3*peak_diffs_std)); 
  
peaks_found(:,outliers) = []; 
  
[not_used, p_start] = findValInd(Y, peaks_found(5,1)); 
[not_used, p_end] = findValInd(Y, peaks_found(6,1)); 
 
[not_used, real_peak_energy, not_used] = 
gaussAndCauchyFit(Y(p_start:p_end,1),Y(p_start:p_end,2)); 
 
[real_peak_hgt, real_peak_pos] = findValInd(Y,real_peak_energy); 
  
mid_index = p_end; 
  
for k = 2:L2 
  
    x1 = Y(1:mid_index,1); 
    y1 = Y(1:mid_index,k); 
  
    [maxy, max_index] = max(y1); 
  
    x_shift = x1-x1(max_index); 



 

 

199
 
    [sigma, mu, Amp]=gaussAndCauchyFit(x_shift,y1); 
  
    pistararea = Amp * sigma * (2*pi) ^ (1/2); % Exact area from 
calculus 
 
    [sigmaarea] = riemannSum(Y,288.6,325); 
  
    data_ratio(k-1) = pistararea / sigmaarea(k-1); 
  
end 
  
if Y(L1,1) >= 325 
    graphite_factor = 17.3324; 
else 
    [graphite_factor] = graphitePiSigmaRatio(Y(L1,1)); 
end 
  
pistarratio = data_ratio; 
  
sp2ratio = graphite_factor * data_ratio; 
 
 
function [integrals] = riemannSum(A,StartE,StopE) 
  
[L1,L2] = size(A); 
  
[not_used, ind_start] = findValInd(A, StartE); 
[not_used, ind_stop] = findValInd(A, StopE); 
  
for jj = 2:L2 
    integrals(jj-1) = sum(A(ind_start:ind_stop-1,jj) + 
0.5*diff(A(ind_start:ind_stop,jj)))*(A(ind_start+1,1)-A(ind_start,1)); 
end 
 
 
function [B] = smooth(A) 
  
[L1,L2] = size(A); 
B = A; 
  
smooth_halfrange = 20; 
  
P = []; 
  
for i = 2:L1-1 
    if i - smooth_halfrange < 1 
        imin = 1; 
        imax = i + smooth_halfrange; 
    elseif i + smooth_halfrange > L1 
        imin = i - smooth_halfrange; 
        imax = L1; 
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    else 
        imin = i - smooth_halfrange; 
        imax = i + smooth_halfrange; 
    end 
     
    P = [[A(imin:i-1, 1); A(i+1:imax, 1)].^2 [A(imin:i-1, 1); 
A(i+1:imax, 1)] ones(size([A(imin:i-1, 1); A(i+1:imax, 1)]))]; 
    p = P\[A(imin:i-1, 2); A(i+1:imax, 2)]; 
  
    B(i,2) = p(1)*A(i,1)^2+p(2)*A(i,1)+p(3); 
end 
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